6,471 research outputs found

    Quantum Creation of the Randall-Sundrum Bubble

    Get PDF
    We investigate the semiclassical instability of the Randall-Sundrum brane world. We carefully analyze the bubble solution with the Randall-Sundrum background, which expresses the decay of the brane world. We evaluate the decay probability following the Euclidean path integral approach to quantum gravity. Since a bubble rapidly expands after the nucleation, the entire spacetime will be occupied by such bubbles.Comment: 13 pages, 6 figures, To appear in Prog. Theor. Phy

    Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants

    Full text link
    The ubiquity of planets and diversity of planetary systems reveal planet formation encompass many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches leads to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interaction between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (> 30AU) gas giants with nearly circular orbits.Comment: 54 pages, 14 Figures; accepted for publication in Astrophysical Journa

    Toward a Deterministic Model of Planetary Formation VI: Dynamical Interaction and Coagulation of Multiple Rocky Embryos and Super-Earth Systems around Solar Type Stars

    Full text link
    Radial velocity and transit surveys indicate that solar-type stars bear super-Earths, with mass and period up to ~ 20 M_E and a few months, are more common than those with Jupiter-mass gas giants. In many cases, these super-Earths are members of multiple-planet systems in which their mutual dynamical interaction has influenced their formation and evolution. In this paper, we modify an existing numerical population synthesis scheme to take into account protoplanetary embryos' interaction with their evolving natal gaseous disk, as well as their close scatterings and resonant interaction with each other. We show that it is possible for a group of compact embryos to emerge interior to the ice line, grow, migrate, and congregate into closely-packed convoys which stall in the proximity of their host stars. After the disk-gas depletion, they undergo orbit crossing, close scattering, and giant impacts to form multiple rocky Earths or super-Earths in non-resonant orbits around ~ 0.1AU with moderate eccentricities of ~0.01-0.1. We suggest that most refractory super-Earths with period in the range of a few days to weeks may have formed through this process. These super-Earths differ from Neptune-like ice giants by their compact sizes and lack of a substantial gaseous envelope.Comment: 37 pages, 10 figures, accepted for publication in Ap

    Lifting of D1-D5-P states

    Full text link
    We consider states of the D1-D5 CFT where only the left-moving sector is excited. As we deform away from the orbifold point, some of these states will remain BPS while others can `lift'. We compute this lifting for a particular family of D1-D5-P states, at second order in the deformation off the orbifold point. We note that the maximally twisted sector of the CFT is special: the covering surface appearing in the correlator can only be genus one while for other sectors there is always a genus zero contribution. We use the results to argue that fuzzball configurations should be studied for the full class including both extremal and near-extremal states; many extremal configurations may be best seen as special limits of near extremal configurations.Comment: 51 pages, 6 figure

    Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation.

    Get PDF
    Knowledge of the relative stabilities of alane (AlH(3)) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH(3-n)R(n) (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH(2-n)R(n) (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of ΔG° for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system

    Psychophysical and physiological evidence for fast binaural processing

    Get PDF
    The mammalian auditory system is the temporally most precise sensory modality: To localize low-frequency sounds in space, the binaural system can resolve time differences between the ears with microsecond precision. In contrast, the binaural system appears sluggish in tracking changing interaural time differences as they arise from a low-frequency sound source moving along the horizontal plane. For a combined psychophysical and electrophysiological approach, we created a binaural stimulus, called "Phasewarp," that can transmit rapid changes in interaural timing. Using this stimulus, the binaural performance in humans is significantly better than reported previously and comparable with the monaural performance revealed with amplitude-modulated stimuli. Parallel, electrophysiological recordings of binaural brainstem neurons in the gerbil show fast temporal processing of monaural and different types of binaural modulations. In a refined electrophysiological approach that was matched to the psychophysics, the seemingly faster binaural processing of the Phasewarp was confirmed. The current data provide both psychophysical and physiological evidence against a general, hard-wired binaural sluggishness and reconcile previous contradictions of electrophysiological and psychophysical estimates of temporal binaural performance

    Eccentricity Evolution of Extrasolar Multiple Planetary Systems due to the Depletion of Nascent Protostellar Disks

    Full text link
    Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semi-major axis ratios. But, prior to the disk depletion, self gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapse is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around Upsilon Andromedae and HD168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.Comment: 50 pages including 11 figures, submitted to Ap
    corecore