6,471 research outputs found
Quantum Creation of the Randall-Sundrum Bubble
We investigate the semiclassical instability of the Randall-Sundrum brane
world. We carefully analyze the bubble solution with the Randall-Sundrum
background, which expresses the decay of the brane world. We evaluate the decay
probability following the Euclidean path integral approach to quantum gravity.
Since a bubble rapidly expands after the nucleation, the entire spacetime will
be occupied by such bubbles.Comment: 13 pages, 6 figures, To appear in Prog. Theor. Phy
Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants
The ubiquity of planets and diversity of planetary systems reveal planet
formation encompass many complex and competing processes. In this series of
papers, we develop and upgrade a population synthesis model as a tool to
identify the dominant physical effects and to calibrate the range of physical
conditions. Recent planet searches leads to the discovery of many
multiple-planet systems. Any theoretical models of their origins must take into
account dynamical interaction between emerging protoplanets. Here, we introduce
a prescription to approximate the close encounters between multiple planets. We
apply this method to simulate the growth, migration, and dynamical interaction
of planetary systems. Our models show that in relatively massive disks, several
gas giants and rocky/icy planets emerge, migrate, and undergo dynamical
instability. Secular perturbation between planets leads to orbital crossings,
eccentricity excitation, and planetary ejection. In disks with modest masses,
two or less gas giants form with multiple super-Earths. Orbital stability in
these systems is generally maintained and they retain the kinematic structure
after gas in their natal disks is depleted. These results reproduce the
observed planetary mass-eccentricity and semimajor axis-eccentricity
correlations. They also suggest that emerging gas giants can scatter residual
cores to the outer disk regions. Subsequent in situ gas accretion onto these
cores can lead to the formation of distant (> 30AU) gas giants with nearly
circular orbits.Comment: 54 pages, 14 Figures; accepted for publication in Astrophysical
  Journa
Toward a Deterministic Model of Planetary Formation VI: Dynamical Interaction and Coagulation of Multiple Rocky Embryos and Super-Earth Systems around Solar Type Stars
Radial velocity and transit surveys indicate that solar-type stars bear
super-Earths, with mass and period up to ~ 20 M_E and a few months, are more
common than those with Jupiter-mass gas giants. In many cases, these
super-Earths are members of multiple-planet systems in which their mutual
dynamical interaction has influenced their formation and evolution. In this
paper, we modify an existing numerical population synthesis scheme to take into
account protoplanetary embryos' interaction with their evolving natal gaseous
disk, as well as their close scatterings and resonant interaction with each
other. We show that it is possible for a group of compact embryos to emerge
interior to the ice line, grow, migrate, and congregate into closely-packed
convoys which stall in the proximity of their host stars. After the disk-gas
depletion, they undergo orbit crossing, close scattering, and giant impacts to
form multiple rocky Earths or super-Earths in non-resonant orbits around ~
0.1AU with moderate eccentricities of ~0.01-0.1. We suggest that most
refractory super-Earths with period in the range of a few days to weeks may
have formed through this process. These super-Earths differ from Neptune-like
ice giants by their compact sizes and lack of a substantial gaseous envelope.Comment: 37 pages, 10 figures, accepted for publication in Ap
Lifting of D1-D5-P states
We consider states of the D1-D5 CFT where only the left-moving sector is
excited. As we deform away from the orbifold point, some of these states will
remain BPS while others can `lift'. We compute this lifting for a particular
family of D1-D5-P states, at second order in the deformation off the orbifold
point. We note that the maximally twisted sector of the CFT is special: the
covering surface appearing in the correlator can only be genus one while for
other sectors there is always a genus zero contribution. We use the results to
argue that fuzzball configurations should be studied for the full class
including both extremal and near-extremal states; many extremal configurations
may be best seen as special limits of near extremal configurations.Comment: 51 pages, 6 figure
Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Investigation.
Knowledge of the relative stabilities of alane (AlH(3)) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for 38 alane complexes with NH(3-n)R(n) (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH(2-n)R(n) (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine and obtaining upper limits of ΔG° for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. On the basis of this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system
Psychophysical and physiological evidence for fast binaural processing
The mammalian auditory system is the temporally most precise sensory modality: To localize low-frequency sounds in space, the binaural system can resolve time differences between the ears with microsecond precision. In contrast, the binaural system appears sluggish in tracking changing interaural time differences as they arise from a low-frequency sound source moving along the horizontal plane. For a combined psychophysical and electrophysiological approach, we created a binaural stimulus, called "Phasewarp," that can transmit rapid changes in interaural timing. Using this stimulus, the binaural performance in humans is significantly better than reported previously and comparable with the monaural performance revealed with amplitude-modulated stimuli. Parallel, electrophysiological recordings of binaural brainstem neurons in the gerbil show fast temporal processing of monaural and different types of binaural modulations. In a refined electrophysiological approach that was matched to the psychophysics, the seemingly faster binaural processing of the Phasewarp was confirmed. The current data provide both psychophysical and physiological evidence against a general, hard-wired binaural sluggishness and reconcile previous contradictions of electrophysiological and psychophysical estimates of temporal binaural performance
Eccentricity Evolution of Extrasolar Multiple Planetary Systems due to the Depletion of Nascent Protostellar Disks
Most extrasolar planets are observed to have eccentricities much larger than
those in the solar system. Some of these planets have sibling planets, with
comparable masses, orbiting around the same host stars. In these multiple
planetary systems, eccentricity is modulated by the planets' mutual secular
interaction as a consequence of angular momentum exchange between them. For
mature planets, the eigenfrequencies of this modulation are determined by their
mass and semi-major axis ratios. But, prior to the disk depletion, self gravity
of the planets' nascent disks dominates the precession eigenfrequencies. We
examine here the initial evolution of young planets' eccentricity due to the
apsidal libration or circulation induced by both the secular interaction
between them and the self gravity of their nascent disks. We show that as the
latter effect declines adiabatically with disk depletion, the modulation
amplitude of the planets' relative phase of periapse is approximately invariant
despite the time-asymmetrical exchange of angular momentum between planets.
However, as the young planets' orbits pass through a state of secular
resonance, their mean eccentricities undergo systematic quantitative changes.
For applications, we analyze the eccentricity evolution of planets around
Upsilon Andromedae and HD168443 during the epoch of protostellar disk
depletion. We find that the disk depletion can change the planets' eccentricity
ratio. However, the relatively large amplitude of the planets' eccentricity
cannot be excited if all the planets had small initial eccentricities.Comment: 50 pages including 11 figures, submitted to Ap
- …
