4 research outputs found

    CONCEPTUAL VISION OF AIRPORT GEOGRAPHIC INFORMATION SYSTEM (AGIS)

    Get PDF
    GIS can providethe airport management staff with visual pavement information and powerful analysis tool. Mean while, the spatial information managed by GIS can ensure the accumulation of valid attribute data of airport pavement. Based on the principle and general implementation process of GIS and the characteristics of airport pavement management, this paper describes the implementation process of GIS in Iraqi Airport planning and design. To organize the spatial entities effectively, some layers are set according to the characteristics of spatial entities. The spatial database is established,and thenthe function design of the GIS software is presented including map exploring, map locating, spatial query, rendering style of map and output of map. In this paper the section on the ground was the case study, Representative the AGIS in building infrastructure layers of Baghdad international airport buildings and pavements. The results were two maps, the first include eleven layers and the other includes two layers, each layer hasinformation that describes the thickness of subsurface. In consequence of the above, comparative study for each type of pavement was made to find the most suitable pavement structure for Baghdad International Airport (BIAP)

    A Comparative Study of Soil Stabilization Effect and Concrete Strength Development on Rigid Pavement Thickness

    Get PDF
    تعتبر التربة الطبيعية هي الجزء السفلي الداعم للطريق الخرساني عند انتقال الأحمال المرورية المختلفة من سطح الطريق اليها فعندما تزيد قوة التربة فان قدرتها على استقبال الأحمال تزداد وبذلك تزيد من متانة الطريق الخرساني وديمومته وعدم التسبب بالمشاكل الإنشائية. اما إذا كانت التربة ضعيفة، فسوف يؤدي ذلك إلى نقصان في العمر الخدمي للطريق ويسبب أنواعًا متعددة من الفشل مثل تلف المفاصل وزيادة الاجهادات والانحراف والتصدع. بالإضافة إلى ذلك، فإن عملية تثبيت التربة تزيد من قوة التربة وتحملها للأحمال العالية، حيث أظهرت النتائج المختبرية أن استخدام 4٪ من المستحلب الأسفلتي أدى إلى تحسين خصائص التربة الجبسية وزيادة نسبة تحمل كاليفورنيا إلى 52٪. ان عملية تصميم الطريق الخرساني باستخدام طريقة تصميم AASHTO واعتمادًا على خصائص الخرسانة وخصائص التربة قبل التثبيت وبعده، وجد أنه أثناء الحسابات التصميمية عند تغير في قيمة CBR في حدود 27-52 ٪ وقوة انضغاط الخرسانة 30 ميجا باسكال نتجت في تقليل سمك الطريق بنسبة 7.5٪. لوحظ كذلك انخفاض بنسبة 7.8٪ في سمك الطرق عند تغيير قيمة CBR من نطاق 27-52٪ وقوة ضغط تبلغ 35 ميجا باسكال. لوحظ ايضاً انخفاض بنسبة 4.5٪ في سمك الطريق مع تباين في مقاومة الانضغاط من 30-35 ميجا باسكال وقيمة CBR تبلغ 27٪. بالإضافة الى انخفاض بنسبة 4.8٪ في السمك مع تباين في مقاومة الانضغاط من 30-35 ميجا باسكال وقيمة CBR تبلغ 52٪، لذلك نجد أن تأثير زيادة مقاومة التربة في تقليل سمك الطريق الخرساني أكبر من تأثير تغيير مقاومة الانضغاط للخرسانة.The subgrade soil is the supporting part of the concrete road for transferring the different traffic loads from the road surface. The strength of this soil increases its ability to receive loads, increases the durability of the concrete road, and does not cause structural failure problems. If the soil is weak, it will decrease pavement service life and cause multiple types of failure on the road such as damage to joints, an increase in stresses and deflection, and cracking. In addition, the soil stabilization process increases the soil's strength and its tolerance to high loads, so the laboratory results showed that the use of 4% of the asphalt emulsion led to improving the gypsum soil properties and increasing the California bearing ratio to 52%. In the process of designing rigid pavement using the AASHTO design method and depending on concrete properties and subgrade properties before and after stabilization, it was found that alterations in the CBR value within the range of 27-52% and a compressive strength of 30 MPa resulted in a reduction of 7.5% in slab thickness during the design calculations. A reduction of 7.8% in slab thickness was observed upon alteration of the CBR value from a range of 27-52% and a compressive strength of 35 MPa. A reduction of 4.5% in slab thickness was observed with a variation in compressive strength from 30-35 MPa and a CBR value of 27%. A reduction of 4.8% in slab thickness was found with a variation in compressive strength from 30-35 MPa and a CBR value of 52%. Therefore, it was found that the effect of increasing the soil strength on reducing the thickness of the concrete road is greater than the effect of changing the compressive strength of concrete

    Sustainable road paving: Enhancing concrete paver blocks with zeolite-enhanced cement

    No full text
    The present investigation assesses the impact of zeolite-enhanced sustainable cement (ZESC), a product achieved through the blending and grinding of clinker, gypsum, and varying percentages of natural zeolite (6, 10, and 15%). While the existing research has mainly concentrated on substituting ordinary Portland Cement with natural or synthetic zeolite, a critical research gap persists in using this manufactured cement in nontraditional building materials. Addressing this gap, our investigation assesses the durability and mechanical properties of concrete paver blocks manufactured by ZESC, particularly crucial for road paving applications. Comprehensive evaluations of hardened properties were conducted, including compressive strength, splitting tensile strength, abrasion resistance, and water absorption. In addition, the impact of ZESC on the fresh properties of concrete paver blocks was examined. The findings reveal that a 15% N.Z. inclusion in ZESC production results in an optimal mix design, leading to a remarkable increase in compressive strength and splitting tensile strength by 24 and 25%, respectively. It reduces water absorption and abrasion resistance by 80 and 7.8%, respectively, compared to O.P.C. cement concrete paver blocks. It is noteworthy that the addition of natural zeolite to ZESC mixtures led to an increased water demand. Notably, the integration of natural zeolite significantly reduces the environmental impact of cement production, promoting a sustainable shift by minimizing cement clinker. The study employs microstructural analysis, supported by scanning electron microscopic images, revealing a significant reduction in microcracks and enhanced cohesiveness, particularly at the aggregate-cemented paste interface in ZESC mixes
    corecore