451 research outputs found
Heterogeneous-driven glutathione oxidation: defining the catalytic role of chalcopyrite nanoparticles
Transition-metal nanocatalysis represents a novel alternative currently experiencing flourishing progress to tackle the tumor microenvironment (TME) in cancer therapy. These nanomaterials aim at attacking tumor cells using the intrinsic selectivity of inorganic catalysts. In addition, special attention to tune and control the release of these transition metals is also required. Understanding the chemical reactions behind the catalytic action of the transition-metal nanocatalysts and preventing potential undesired side reactions caused by acute cytotoxicity of the released ionic species represent another important field of research. Specifically, copper-based oxides may suffer from acute leaching that potentially may induce toxicity not only to target cancer cells but also to nearby cells and tissues. In this work, we propose the synthesis of chalcopyrite (CuFeS2) nanostructures capable of triggering two key reactions for an effective chemodynamic therapy (CDT) in the heterogeneous phase: (i) glutathione (GSH) oxidation and (ii) oxidation of organic substrates using H2O2, with negligible leaching of metals under TME-like conditions. This represents an appealing alternative toward the development of safer copper–iron-based nanocatalytic materials with an active catalytic response without incurring leaching side phenomena
Phylogeny and Niche Conservatism in North and Central American Triatomine Bugs (Hemiptera: Reduviidae: Triatominae), Vectors of Chagas' Disease
The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios.CNIC was funded with a graduate scholarship from CONACYT (Consejo Nacional de Ciencia y Tecnologia) for his PhD studies in the Biomedical Sciences Program of the UNAM (Universidad Nacional Autonoma de Mexico), fulfilled in part by this study. Studies on vector bionomics and ecology were funded by CONACYT Fomix Morelos MOR-2004-C02-012 and CONACYT FONSEC 69997 and 161405 to JMR. This work was partially supported by DGAPA-UNAM (PAPIIT 487 IN225408, IN202711) and the CONACYT-CB-2009/132811 to VSC, and PAPIIT 2013488 and CONACYT-511 to AZR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Active Q-switched Fiber Lasers with Single and Dualwavelength Operation
A brief explanation on Q-switched fiber laser operating principle for active technique in terms of operation characteristics is presented. Experimental analysis of proposed pulsed fiber lasers by the active Q-switched technique is demonstrated. Experimental setups include the use of Er/Yb doped fiber as a gain medium and an acousto-optic modulator as cavity elements. Setup variations include the use of fiber Bragg gratings for wavelength selection and tuning and Sagnac interferometer for wavelength selection in single wavelength operation and for cavity loss adjustment in dual wavelength operation. The experimental analysis of principal characteristics of single-wavelength operation of the fiber laser and cavity loss adjustment method for dual-wavelength laser operation are discussed
Unveiling optical signatures of outflows in accreting white dwarfs
Accreting white dwarfs are known to show signatures of wind-type outflows in
the ultraviolet. At optical wavelengths, however, wind detections have only
been reported for a few sources. We present GTC-10.4m optical spectroscopy of
four accreting white dwarfs (BZ Cam, V751 Cyg, MV Lyr, and V425 Cas) observed
during luminous epochs, when their optical emission is expected to be dominated
by the accretion disc. We focused the analysis on four emission lines:
H and He I 5876, 6678, 7065. Line profiles
are complex and variable on short (minutes) and long (days to weeks) time
scales, with transient absorption and emission components. Among them, we
detect strong blue-shifted absorptions at km s. These
high-velocity components, present only in the blue wing of the emission lines,
are observed in all four sources and could be associated with accretion disc
winds. For MV Lyr and V425 Cas, these would represent the first detection of
optical outflows in these objects, while in the case of BZ Cam and V751 Cyg,
the presence of outflows has been previously reported. This study suggests
that, in addition to ultraviolet winds, optical outflows might be also common
in accreting white dwarfs. We discuss the observational properties of these
winds and their possible similarity to those detected in accreting black holes
and neutrons stars.Comment: Accepted for publication in A&
Ecological Connectivity of Trypanosoma cruzi Reservoirs and Triatoma pallidipennis Hosts in an Anthropogenic Landscape with Endemic Chagas Disease
Traditional methods for Chagas disease prevention are targeted at domestic vector reduction, as well as control of transfusion and maternal-fetal transmission. Population connectivity of Trypanosoma cruzi-infected vectors and hosts, among sylvatic, ecotone and domestic habitats could jeopardize targeted efforts to reduce human exposure. This connectivity was evaluated in a Mexican community with reports of high vector infestation, human infection, and Chagas disease, surrounded by agricultural and natural areas. We surveyed bats, rodents, and triatomines in dry and rainy seasons in three adjacent habitats (domestic, ecotone, sylvatic), and measured T. cruzi prevalence, and host feeding sources of triatomines. Of 12 bat and 7 rodent species, no bat tested positive for T. cruzi, but all rodent species tested positive in at least one season or habitat. Highest T. cruzi infection prevalence was found in the rodents, Baiomys musculus and Neotoma mexicana. In general, parasite prevalence was not related to habitat or season, although the sylvatic habitat had higher infection prevalence than by chance, during the dry season. Wild and domestic mammals were identified as bloodmeals of T. pallidipennis, with 9% of individuals having mixed human (4.8% single human) and other mammal species in bloodmeals, especially in the dry season; these vectors tested >50% positive for T. cruzi. Overall, ecological connectivity is broad across this matrix, based on high rodent community similarity, vector and T. cruzi presence. Cost-effective T. cruzi, vector control strategies and Chagas disease transmission prevention will need to consider continuous potential for parasite movement over the entire landscape. This study provides clear evidence that these strategies will need to include reservoir/host species in at least ecotones, in addition to domestic habitats.This study was funded by the Secretaria de Salud and Consejo Nacional de Ciencia y Tecnología (CONACyt) project MOR-2004-CO2-012 to JMR, and by the Universidad Nacional Autónoma de México (PAPIIT project 225408 to VS-C, and the Sistema de Informática para la Biodiversidad y el Ambiente [SIBA], and Tecnologías para la Universidad de la Información y la Computación. AEGC was funded with a scholarship from CONACyT for a M. Sc. degree in vector-borne diseases at the Instituto Nacional de Salud Publica. CNIC is funded with a scholarship from CONACyT for studies at the graduate program in Biomedical Sciences of the Universidad Nacional Autonoma de Mexico
SDSS-IV MANGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence
We present our study on the spatially resolved H_alpha and M_star relation
for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We
show that the star formation rate surface density (Sigma_SFR), derived based on
the H_alpha emissions, is strongly correlated with the M_star surface density
(Sigma_star) on kpc scales for star- forming galaxies and can be directly
connected to the global star-forming sequence. This suggests that the global
main sequence may be a consequence of a more fundamental relation on small
scales. On the other hand, our result suggests that about 20% of quiescent
galaxies in our sample still have star formation activities in the outer region
with lower SSFR than typical star-forming galaxies. Meanwhile, we also find a
tight correlation between Sigma_H_alpha and Sigma_star for LI(N)ER regions,
named the resolved "LI(N)ER" sequence, in quiescent galaxies, which is
consistent with the scenario that LI(N)ER emissions are primarily powered by
the hot, evolved stars as suggested in the literature.Comment: 6 pages, 4 figures. ApJ Letter accepte
SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR-M ∗ Relations on Galaxy Properties
Indexación: Scopus.The galaxy integrated Hα star formation rate-stellar mass relation, or SFR(global)-M ∗(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα(all)) and stellar mass surface density (Σ∗(all)) progressively turns over at the high Σ∗(all) end for increasing M ∗(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)-M ∗(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H ii)-M ∗(H ii) and spatially resolved ΣHα(H ii)-Σ∗(H ii) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR-M ∗ relation critically depends on their global properties (M ∗(global) and B/T) and relative abundances of various ionizing sources within the galaxies.http://iopscience.iop.org/article/10.3847/1538-4357/aaa9bc/met
- …