3,259 research outputs found
Validity of the N\'{e}el-Arrhenius model for highly anisotropic Co_xFe_{3-x}O_4 nanoparticles
We report a systematic study on the structural and magnetic properties of
Co_{x}Fe_{3-x}O_{4} magnetic nanoparticles with sizes between to nm,
prepared by thermal decomposition of Fe(acac)_{3} and Co(acac)_{2}. The large
magneto-crystalline anisotropy of the synthesized particles resulted in high
blocking temperatures ( K \leqq K for d nm ) and large coercive fields ( kA/m for K).
The smallest particles ( nm) revealed the existence of a magnetically
hard, spin-disordered surface. The thermal dependence of static and dynamic
magnetic properties of the whole series of samples could be explained within
the N\'{e}el-Arrhenius relaxation framework without the need of ad-hoc
corrections, by including the thermal dependence of the magnetocrystalline
anisotropy constant through the empirical Br\"{u}khatov-Kirensky
relation. This approach provided values very similar to the bulk
material from either static or dynamic magnetic measurements, as well as
realistic values for the response times ( s).
Deviations from the bulk anisotropy values found for the smallest particles
could be qualitatively explained based on Zener\'{}s relation between
and M(T)
Recommended from our members
Dynamic Patterns of Transcript Abundance of Transposable Element Families in Maize.
Transposable Elements (TEs) are mobile elements that contribute the majority of DNA sequences in the maize genome. Due to their repetitive nature, genomic studies of TEs are complicated by the difficulty of properly attributing multi-mapped short reads to specific genomic loci. Here, we utilize a method to attribute RNA-seq reads to TE families rather than particular loci in order to characterize transcript abundance for TE families in the maize genome. We applied this method to assess per-family expression of transposable elements in >800 published RNA-seq libraries representing a range of maize development, genotypes, and hybrids. While a relatively small proportion of TE families are transcribed, expression is highly dynamic with most families exhibiting tissue-specific expression. A large number of TE families were specifically detected in pollen and endosperm, consistent with reproductive dynamics that maintain silencing of TEs in the germ line. We find that B73 transcript abundance is a poor predictor of TE expression in other genotypes and that transcript levels can differ even for shared TEs. Finally, by assessing recombinant inbred line and hybrid transcriptomes, complex patterns of TE transcript abundance across genotypes emerged. Taken together, this study reveals a dynamic contribution of TEs to maize transcriptomes
The Brightest Cluster Galaxy in Abell 85: The Largest Core Known so far
We have found that the brightest cluster galaxy (BCG) in Abell~85, Holm 15A,
displays the largest core so far known. Its cusp radius, kpc (), is more than 18 times
larger than the mean for BCGs, and kpc larger than A2261-BCG, hitherto
the largest-cored BCG (Postman, Lauer, Donahue, et al. 2012) Holm 15A hosts the
luminous amorphous radio source 0039-095B and has the optical signature of a
LINER. Scaling laws indicate that this core could host a supermassive black
hole (SMBH) of mass . We
suggest that cores this large represent a relatively short phase in the
evolution of BCGs, whereas the masses of their associated SBMH might be set by
initial conditions.Comment: 14 pages, 3 figure, 2 tables, accepted for publication in ApJ Letters
on October 6th, 2014, replacement of previous manuscript submitted on May
30th, 2014 to astro-p
Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors
Nonlinear control techniques by means of a software sensor that are commonly
used in chemical engineering could be also applied to genetic regulation
processes. We provide here a realistic formulation of this procedure by
introducing an additive white Gaussian noise, which is usually found in
experimental data. Besides, we include model errors, meaning that we assume we
do not know the nonlinear regulation function of the process. In order to
illustrate this procedure, we employ the Goodwin dynamics of the concentrations
[B.C. Goodwin, Temporal Oscillations in Cells, (Academic Press, New York,
1963)] in the simple form recently applied to single gene systems and some
operon cases [H. De Jong, J. Comp. Biol. 9, 67 (2002)], which involves the
dynamics of the mRNA, given protein, and metabolite concentrations. Further, we
present results for a three gene case in co-regulated sets of transcription
units as they occur in prokaryotes. However, instead of considering their full
dynamics, we use only the data of the metabolites and a designed software
sensor. We also show, more generally, that it is possible to rebuild the
complete set of nonmeasured concentrations despite the uncertainties in the
regulation function or, even more, in the case of not knowing the mRNA
dynamics. In addition, the rebuilding of concentrations is not affected by the
perturbation due to the additive white Gaussian noise and also we managed to
filter the noisy output of the biological systemComment: 21 pages, 7 figures; also selected in vjbio of August 2005; this
version corrects a misorder in the last three references of the published
versio
A Brief Review on Dark Matter Annihilation Explanation for Excesses in Cosmic Ray
Recently data from PAMELA, ATIC, FERMI-LAT and HESS show that there are
excesses in the cosmic ray energy spectrum. PAMELA observed excesses
only in , but not in anti-proton spectrum. ATIC, FERMI-LAT and HESS
observed excesses in spectrum, but the detailed shapes are different
which requires future experimental observations to pin down the correct data
set. Nevertheless a lot of efforts have been made to explain the observed
excesses, and also why PAMELA only observed excesses in but not
in anti-proton. In this brief review we discuss one of the most popular
mechanisms to explain the data, the dark matter annihilation. It has long been
known that about 23% of our universe is made of relic dark matter. If the relic
dark matter was thermally produced, the annihilation rate is constrained
resulting in the need of a large boost factor to explain the data. We will
discuss in detail how a large boost factor can be obtained by the Sommerfeld
and Briet-Wigner enhancement mechanisms. Some implications for particle physics
model buildings will also be discussed.Comment: 22 pages, 6 figures. Several typoes corrected and some references
added. Published in Mod. Phys. Lett. A, Vol. 24, No. 27 (2009) pp. 2139-216
SDSS-IV MANGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence
We present our study on the spatially resolved H_alpha and M_star relation
for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We
show that the star formation rate surface density (Sigma_SFR), derived based on
the H_alpha emissions, is strongly correlated with the M_star surface density
(Sigma_star) on kpc scales for star- forming galaxies and can be directly
connected to the global star-forming sequence. This suggests that the global
main sequence may be a consequence of a more fundamental relation on small
scales. On the other hand, our result suggests that about 20% of quiescent
galaxies in our sample still have star formation activities in the outer region
with lower SSFR than typical star-forming galaxies. Meanwhile, we also find a
tight correlation between Sigma_H_alpha and Sigma_star for LI(N)ER regions,
named the resolved "LI(N)ER" sequence, in quiescent galaxies, which is
consistent with the scenario that LI(N)ER emissions are primarily powered by
the hot, evolved stars as suggested in the literature.Comment: 6 pages, 4 figures. ApJ Letter accepte
Solving Medium-Density Subset Sum Problems in Expected Polynomial Time: An Enumeration Approach
The subset sum problem (SSP) can be briefly stated as: given a target integer
and a set containing positive integer , find a subset of
summing to . The \textit{density} of an SSP instance is defined by the
ratio of to , where is the logarithm of the largest integer within
. Based on the structural and statistical properties of subset sums, we
present an improved enumeration scheme for SSP, and implement it as a complete
and exact algorithm (EnumPlus). The algorithm always equivalently reduces an
instance to be low-density, and then solve it by enumeration. Through this
approach, we show the possibility to design a sole algorithm that can
efficiently solve arbitrary density instance in a uniform way. Furthermore, our
algorithm has considerable performance advantage over previous algorithms.
Firstly, it extends the density scope, in which SSP can be solved in expected
polynomial time. Specifically, It solves SSP in expected time
when density , while the previously best
density scope is . In addition, the overall
expected time and space requirement in the average case are proven to be
and respectively. Secondly, in the worst case, it
slightly improves the previously best time complexity of exact algorithms for
SSP. Specifically, the worst-case time complexity of our algorithm is proved to
be , while the previously best result is .Comment: 11 pages, 1 figur
- …
