2,754 research outputs found

    Validity of the N\'{e}el-Arrhenius model for highly anisotropic Co_xFe_{3-x}O_4 nanoparticles

    Get PDF
    We report a systematic study on the structural and magnetic properties of Co_{x}Fe_{3-x}O_{4} magnetic nanoparticles with sizes between 55 to 2525 nm, prepared by thermal decomposition of Fe(acac)_{3} and Co(acac)_{2}. The large magneto-crystalline anisotropy of the synthesized particles resulted in high blocking temperatures (4242 K \leqq TBT_B ≦345\leqq 345 K for 5≦5 \leqq d ≦13\leqq 13 nm ) and large coercive fields (HC≊1600H_C \approxeq 1600 kA/m for T=5T = 5 K). The smallest particles (=5=5 nm) revealed the existence of a magnetically hard, spin-disordered surface. The thermal dependence of static and dynamic magnetic properties of the whole series of samples could be explained within the N\'{e}el-Arrhenius relaxation framework without the need of ad-hoc corrections, by including the thermal dependence of the magnetocrystalline anisotropy constant K1(T)K_1(T) through the empirical Br\"{u}khatov-Kirensky relation. This approach provided K1(0)K_1(0) values very similar to the bulk material from either static or dynamic magnetic measurements, as well as realistic values for the response times (τ0≃10−10\tau_0 \simeq 10^{-10} s). Deviations from the bulk anisotropy values found for the smallest particles could be qualitatively explained based on Zener\'{}s relation between K1(T)K_1(T) and M(T)

    The impact and correlation of the digital transformation on GDP growth in different regions Worldwide

    Get PDF
    [EN] Currently our society is experiencing a process of digital transfor- mation worldwide, in 2016 the digital economy accounted for 22.5% of the world economy. The digital transformation has enabled the creation of new business models, the generation of opportunities and the maximization of effi- ciency in traditional companies that have wanted to reconvert their business model towards a new digital environment and the culture of data orientation. This document contains an analysis of how the adoption of digital technologies has a positive influence on the growth of the world economy as a whole, and particularly on the growth of some regions of the world

    The Brightest Cluster Galaxy in Abell 85: The Largest Core Known so far

    Get PDF
    We have found that the brightest cluster galaxy (BCG) in Abell~85, Holm 15A, displays the largest core so far known. Its cusp radius, rγ=4.57±0.06r_{\gamma} = 4.57 \pm 0.06 kpc (4.26′′±0.06′′4.26^{\prime\prime}\pm 0.06^{\prime\prime}), is more than 18 times larger than the mean for BCGs, and ≥1\geq1 kpc larger than A2261-BCG, hitherto the largest-cored BCG (Postman, Lauer, Donahue, et al. 2012) Holm 15A hosts the luminous amorphous radio source 0039-095B and has the optical signature of a LINER. Scaling laws indicate that this core could host a supermassive black hole (SMBH) of mass M∙∼(109−1011) M⊙M_{\bullet}\thicksim (10^{9}-10^{11})\,M_{\odot}. We suggest that cores this large represent a relatively short phase in the evolution of BCGs, whereas the masses of their associated SBMH might be set by initial conditions.Comment: 14 pages, 3 figure, 2 tables, accepted for publication in ApJ Letters on October 6th, 2014, replacement of previous manuscript submitted on May 30th, 2014 to astro-p

    Minimal lepton flavor violating realizations of minimal seesaw models

    Full text link
    We study the implications of the global U(1)R symmetry present in minimal lepton flavor violating implementations of the seesaw mechanism for neutrino masses. In the context of minimal type I seesaw scenarios with a slightly broken U(1)R, we show that, depending on the R-charge assignments, two classes of generic models can be identified. Models where the right-handed neutrino masses and the lepton number breaking scale are decoupled, and models where the parameters that slightly break the U(1)R induce a suppression in the light neutrino mass matrix. We show that within the first class of models, contributions of right-handed neutrinos to charged lepton flavor violating processes are severely suppressed. Within the second class of models we study the charged lepton flavor violating phenomenology in detail, focusing on mu to e gamma, mu to 3e and mu to e conversion in nuclei. We show that sizable contributions to these processes are naturally obtained for right-handed neutrino masses at the TeV scale. We then discuss the interplay with the effects of the right-handed neutrino interactions on primordial B - L asymmetries, finding that sizable right-handed neutrino contributions to charged lepton flavor violating processes are incompatible with the requirement of generating (or even preserving preexisting) B - L asymmetries consistent with the observed baryon asymmetry of the Universe.Comment: 21 pages, 4 figures; version 2: Discussion on possible generic models extended, typos corrected, references added. Version matches publication in JHE

    Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    Full text link
    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B.C. Goodwin, Temporal Oscillations in Cells, (Academic Press, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comp. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein, and metabolite concentrations. Further, we present results for a three gene case in co-regulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological systemComment: 21 pages, 7 figures; also selected in vjbio of August 2005; this version corrects a misorder in the last three references of the published versio
    • …
    corecore