3,155 research outputs found

    Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas

    Get PDF
    The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasma is isentropically overstable, the wave amplitude grows, the strength of the shock increases and the breaking time decreases. The magnitude of the above effects depends upon the angle between the wave vector and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar abundances either in the interstellar medium or in the solar atmosphere, as well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature where the plasma is isentropically unstable and the corresponding time and length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200

    The F-Landscape: Dynamically Determining the Multiverse

    Full text link
    We evolve our Multiverse Blueprints to characterize our local neighborhood of the String Landscape and the Multiverse of plausible string, M- and F-theory vacua. Building upon the tripodal foundations of i) the Flipped SU(5) Grand Unified Theory (GUT), ii) extra TeV-Scale vector-like multiplets derived out of F-theory, and iii) the dynamics of No-Scale Supergravity, together dubbed No-Scale F-SU(5), we demonstrate the existence of a continuous family of solutions which might adeptly describe the dynamics of distinctive universes. This Multiverse landscape of F-SU(5) solutions, which we shall refer to as the F-Landscape, accommodates a subset of universes compatible with the presently known experimental uncertainties of our own universe. We show that by secondarily minimizing the minimum of the scalar Higgs potential of each solution within the F-Landscape, a continuous hypervolume of distinct minimum minimorum can be engineered which comprise a regional dominion of universes, with our own universe cast as the bellwether. We conjecture that an experimental signal at the LHC of the No-Scale F-SU(5) framework's applicability to our own universe might sensibly be extrapolated as corroborating evidence for the role of string, M- and F-theory as a master theory of the Multiverse, with No-Scale supergravity as a crucial and pervasive reinforcing structure.Comment: 15 Pages, 7 Figures, 1 Tabl

    Gravitational Violation of R Parity and its Cosmological Signatures

    Get PDF
    The discrete R-parity (RPR_P) usually imposed on the Supersymmetric (SUSY) models is expected to be broken at least gravitationally. If the neutralino is a dark matter particle its decay channels into positrons, antiprotons and neutrinos are severely constrained from astrophysical observations. These constraints are shown to be violated even for Planck-mass-suppressed dimension-five interactions arising from gravitational effects. We perform a general analysis of gravitationally induced RPR_P violation and identify two plausible and astrophysically consistent scenarios for achieving the required suppression.Comment: 10 pages, no figure

    Gravitational lensing by stars with angular momentum

    Full text link
    Gravitational lensing by spinning stars, approximated as homogeneous spheres, is discussed in the weak field limit. Dragging of inertial frames, induced by angular momentum of the deflector, breaks spherical symmetry. I examine how the gravito-magnetic field affects image positions, caustics and critical curves. Distortion in microlensing-induced light curves is also considered.Comment: 9 pages, 9 figures; to appear in MNRA

    Complete set of Feynman rules for the MSSM -- ERRATUM

    Full text link
    This erratum contains the full corrected version of the paper {\em Complete set of Feynman rules for the Minimal Supersymmetric Standard Model}, published in Phys. Rev. D41 (3464) 1990. The complete set of Feynman rules for the R-parity conserving MSSM is listed, including the most general form of flavour mixing. Propagators and vertices are computed in t'Hooft-Feynman gauge, convenient for perturbative calculations beyond the tree level.Comment: 46 pages, uses axodraw.sty. This is the "integrated" version of the erratum, i.e. full text of the paper with errors correcte

    New Mechanism of Flavor Symmetry Breaking from Supersymmetric Strong Dynamics

    Get PDF
    We present a class of supersymmetric models in which flavor symmetries are broken dynamically, by a set of composite flavon fields. The strong dynamics that is responsible for confinement in the flavor sector also drives flavor symmetry breaking vacuum expectation values, as a consequence of a quantum-deformed moduli space. Yukawa couplings result as a power series in the ratio of the confinement to Planck scale, and the fermion mass hierarchy depends on the differing number of preons in different flavor symmetry-breaking operators. We present viable non-Abelian and Abelian flavor models that incorporate this mechanism.Comment: 24 pp. LaTe

    The Low Redshift survey at Calar Alto (LoRCA)

    Get PDF
    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z<0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 Mpc/h wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34,000 sq. deg.), i.e. a K(2MASS)<14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4\% and 1.2\% using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy.Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto (LoRCA), to observe spectroscopically about 200,000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.Comment: 15 pages. Accepted in MNRAS. Please visit our website: http://lorca-survey.ft.uam.es
    • 

    corecore