210 research outputs found

    Amphibian diversity in Serranía de Majé, an isolated mountain range in eastern Panamá

    Get PDF
    Eastern Panama is within the Mesoamerican biodiversity hotspot and supports an understudied amphibian fauna. Here we characterize the amphibian diversity across an elevational gradient in one of the least studied mountain ranges in eastern Panama, Serrania de Maje. A total of 38 species were found, which represent 17% of all species reported for Panama. Based on expected richness function and individual-based rarefaction curves, it is estimated that this is an underestimate and that at least 44 amphibian species occur in this area. Members of all three amphibian orders were encountered, represented by ten families and 22 genera, including five species endemic to Central America. Estimated species richness decreased with elevation, and the mid-elevation site supported both lowland and highland species. Our study provides a baseline for understanding the distribution pattern of amphibians in Panama, for conservation efforts, and for determining disease-induced changes in amphibian communities.85911713

    Recent and Rapid Radiation of the Highly Endangered Harlequin Frogs (Atelopus) into Central America Inferred from Mitochondrial DNA Sequences

    Get PDF
    Populations of amphibians are experiencing severe declines worldwide. One group with the most catastrophic declines is the Neotropical genus Atelopus (Anura: Bufonidae). Many species of Atelopus have not been seen for decades and all eight Central American species are considered “Critically Endangered”, three of them very likely extinct. Nonetheless, the taxonomy, phylogeny, and biogeographic history of Central American Atelopus are still poorly known. In this study, the phylogenetic relationships among seven of the eight described species in Central America were inferred based on mitochondrial DNA sequences from 103 individuals, including decades-old museum samples and two likely extinct species, plus ten South American species. Among Central American samples, we discovered two candidate species that should be incorporated into conservation programs. Phylogenetic inference revealed a ladderized topology, placing species geographically furthest from South America more nested in the tree. Model-based ancestral area estimation supported either one or two colonization events from South America. Relaxed-clock analysis of divergence times indicated that Atelopus colonized Central America prior to 4 million years ago (Ma), supporting a slightly older than traditional date for the closure of the Isthmus. This study highlights the invaluable role of museum collections in documenting past biodiversity, and these results could guide future conservation efforts

    Experimental trial on surgical treatment for transverse fractures of the proximal phalanx: technique using intramedullary conical compression screw versus lateral compression plate

    Get PDF
    AbstractObjectiveTo compare the mechanical parameters between two methods for stabilization through compression: 1.5mm axial compression plate versus conical compression screw used as an intramedullary tutor.MethodsPolyurethane models (Sawbone®) that simulated transverse fractures of the proximal phalanx were used. The models were divided into three groups: lateral plate, conical screw and no implant.ResultsGreater force was needed to result in fatigue in the synthesis using an intramedullary plate. Thus, this model was proven to be mechanically superior to the model with the lateral plate.ConclusionStabilization using the Acutrak® screw for treating fractures in the model used in this trial presents mechanical results that are statistically significantly superior to those from the axial compression technique using the lateral plate (Aptus Hand®)

    The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis

    No full text
    Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome.S.G-I was supported by a ‘‘Juan de la Cierva’’ fellowship from the Spanish Ministry for Science and Innovation. This work was funded by the Spanish Ministry for Science and Innovation grants BIO2010-21739, CSD2007-00057 and EUI2008- 03666 to R.S. J.P.R is an Australian Research Council Future Fellow (FT0992129)

    Marchantia polymorpha model reveals conserved infection mechanisms in the vascular wilt fungal pathogen Fusarium oxysporum

    Get PDF
    How co-evolution has shaped the interaction between plants andtheir associated microbes remains a central question in organis-mic interactions (Bonfante & Genre, 2010; Delaux & Schor-nack, 2021). Plants have evolved a sophisticated and multilayeredimmune system to ward off potential microbial invaders (Jones& Dangl, 2006; Boller & Felix, 2009). In addition, pathogenshave developed mechanisms allowing them to enter living plants,colonise their tissues and overcome their defence responses.Pathogenicity factors can be either broadly conserved or speciesspecific and include regulators of cell signalling, gene expressionor development, as well as secreted effector molecules that modu-late the host environment (Jongeet al., 2011; Turr aet al., 2014;Weiberget al., 2014; Prestiet al., 2015; Ryder & Talbot, 2015;van der Does & Rep, 2017).A particularly destructive group of plant pathogens are thosecausing vascular wilt diseases, which infect the roots and colonisethe highly protected and nutrient poor niche of the xylem(Yadeta & Thomma, 2013). The ascomycete fungusFusariumoxysporum(Fo) represents a species complex with worldwidedistribution that provokes devastating losses in more than 150different crops (Deanet al., 2012). Fo exhibits a hemibiotrophlifestyle with an initial biotrophic phase characterised by intercel-lular growth in the root cortex, followed by invasion of the vascu-lature and transition to the necrotrophic phase resulting inmaceration and death of the colonised host (Redkaret al., 2021).In the soil, Fo is able to locate roots by sensing secreted plant per-oxidases via its sex pheromone receptors and the cell wallintegrity mitogen activated protein kinase (MAPK) pathway(Turr aet al., 2015). Once inside the root, the fungus secretes asmall regulatory peptide that mimics plant Rapid ALkalinisationFactor (RALF) to induce host alkalisation, which in turn activatesa conserved MAPK cascade that promotes plant invasive growth(Masachiset al., 2016). Additional pathogenicity determinantsinclude transcriptional regulators, fungus/plant cell wall remod-elling components or secondary metabolites, among others(Michielse & Rep, 2009).Individual Fo isolates exhibit host-specific pathogenicity,which is determined by lineage-specific (LS) chromosomes thatencode distinct repertoires of effectors known as Secreted inXylem (Six) (Maet al., 2010; van Damet al., 2016). Some Six proteins appear to primarily target plant defence responses, butcan also be recognised as avirulence factors by specific host recep-tors (Houtermanet al., 2009; Tintoret al., 2020). In addition tothe pathogenic forms, the Fo species complex (FOSC) alsoincludes endophytic isolates such as Fo47, which was isolatedfrom a natural disease suppressive soil (Alabouvette, 1986; Wanget al., 2020). Fo47 colonises plant roots without causing wiltsymptoms and functions as a biological control agent againstpathogenic Fo strains. How vascular wilt fungi such as Fo gainedthe ability to associate with plant hosts and evolved endophyticand pathogenic lifestyles remains poorly understood.The bryophyteMarchantia polymorpha(Mp) belongs to theancient lineage of liverworts and has emerged as the primenonvascular plant model for studying the evolution of molecularplant–microbe interactions (Evo-MPMI), due to its low geneticredundancy, the simplicity of its gene families and an accessiblemolecular genetic toolbox (Ishizakiet al., 2008; Lockhart, 2015;Bowmanet al., 2017; Upsonet al., 2018; Gimenez-Ibanezet al.,2019). Importantly, Mp possesses receptor-like kinases (RLKs),nucleotide binding, leucine-rich repeat receptors (NLRs) and sal-icylic acid (SA) pathway genes similar to those mediatingimmune signalling in angiosperms (Xueet al., 2012; Bowmanet al., 2017), therefore allowing the study of plant–microbe inter-actions across evolutionarily distant land plant lineages such asliverworts and eudicots, which diverged>450 million years ago(Ma) (Carellaet al., 2018). A current shortcoming of Mp is thatonly few pathogen infection models have been developed forin vitropathogenicity assays. These include the fungiXylariacubensisandColletotrichum sp1, the oomycetePhytophthorapalmivoraand the Gram-negative bacteriumPseudomonassyringae(Nelsonet al., 2018; Carellaet al., 2019; Gimenez-Ibanezet al., 2019). A survey of the Mp microbiome identified anumber of fungal endophytes, some of which can also act aspathogens (Matsuiet al., 2019; Nelson & Shaw, 2019). Whetherroot-infecting vascular wilt fungi can colonise this land plant lin-eage, which is evolutionarily distant to eudicots and lacks bothtrue roots and xylem, is currently unknown.Here we established a new pathosystem between Fo and Mp.We find that Fo isolates that are either endophytic or pathogenicon different crops (tomato, banana, cotton) are all able tocolonise and macerate the thallus of this nonvascular plant. Infec-tion of Mp by Fo requires fungal core pathogenicity factors,whereas LS effectors are dispensable suggesting that this vascularwilt fungus employs conserved mechanisms during infection ofevolutionarily distant plant lineages. We further show that thefungal transition from biotrophic intercellular growth tonecrotrophic maceration and sporulation, which on angiospermsrelies on host-specific factors promoting xylem invasion, occursdirectly on the nonvascular plant Mp

    JAZ2 controls stomata dynamics during bacterial invasion

    Get PDF
    Coronatine (COR) facilitates entry of bacteria into the plant apoplast by stimulating stomata opening. COR-induced signaling events at stomata remain unclear. We found that the COR and jasmonate isoleucine (JA-Ile) co-receptor JAZ2 is constitutively expressed in guard cells and modulates stomatal dynamics during bacterial invasion. We analyzed tissue expression patterns of AtJAZ genes and measured stomata opening and pathogen resistance in loss- and gain-of-function mutants. Arabidopsis jaz2 mutants are partially impaired in pathogen-induced stomatal closing and more susceptible to Pseudomonas. Gain-of-function mutations in JAZ2 prevent stomatal reopening by COR and are highly resistant to bacterial penetration. The JAZ2 targets MYC2, MYC3 and MYC4 directly regulate the expression of ANAC19, ANAC55 and ANAC72 to modulate stomata aperture. Due to the antagonistic interactions between the salicylic acid (SA) and JA defense pathways, efforts to increase resistance to biotrophs result in enhanced susceptibility to necrotrophs, and vice versa. Remarkably, dominant jaz2Δjas mutants are resistant to Pseudomonas syringae but retain unaltered resistance against necrotrophs. Our results demonstrate the existence of a COI1-JAZ2-MYC2,3,4-ANAC19,55,72 module responsible for the regulation of stomatal aperture that is hijacked by bacterial COR to promote infection. They also provide novel strategies for crop protection against biotrophs without compromising resistance to necrotrophs

    A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus

    Get PDF
    Citrus genus includes some of the most important cultivated fruit trees worldwide. Despite being extensively studied because of its commercial relevance, the origin of cultivated citrus species and the history of its domestication still remain an open question. Here, we present a phylogenetic analysis of the chloroplast genomes of 34 citrus genotypes which constitutes the most comprehensive and detailed study to date on the evolution and variability of the genus Citrus. A statistical model was used to estimate divergence times between the major citrus groups. Additionally, a complete map of the variability across the genome of different citrus species was produced, including single nucleotide variants, heteroplasmic positions, indels (insertions and deletions), and large structural variants. The distribution of all these variants provided further independent support to the phylogeny obtained. An unexpected finding was the high level of heteroplasmy found in several of the analyzed genomes. The use of the complete chloroplast DNA not only paves the way for a better understanding of the phylogenetic relationships within the Citrus genus but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance, heteroplasmy, and gene selection

    Optical properties of amorphous, erbium-doped yttrium alumino-borate thin films

    Get PDF
    In this paper, we report on the optical characterizations of erbium-doped yttrium alumino-borate glassy thin films prepared by the polymeric precursor and sol–gel routes and the spin-coating technique. High quality planar waveguides were produced by a multilayer processing of Y1−xErxAl3(BO3)4 compositions with x = 0.02, 0.05, 0.10, 0.30, and 0.50. Their optical properties were investigated using transmission, photoluminescence, and m-lines spectroscopy, whereas high resolution scanning electron microscopy (HR-SEM) was applied to check film thickness and surface homogeneity. The refractive indices determined from transmission and m-lines spectroscopy are in good agreement just like the film thickness measured by HR-SEM and transmission spectroscopy. We observed low propagation losses, together with efficient photoluminescence emission for polymeric precursor thin films, involving low cost and environment friendly reactants.FAPESPCNPqCAPES-COFECUB Brazil–Franc

    Ligand diversity contributes to the full activation of the jasmonate pathway in Marchantia polymorpha

    Get PDF
    In plants, jasmonate signaling regulates a wide range of processes from growth and development to defense responses and thermotolerance. Jasmonates, such as jasmonic acid (JA), (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), 12-oxo-10,15(Z)-phytodienoic acid (OPDA), and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), are derived from C18 (18 Carbon atoms) and C16 polyunsaturated fatty acids (PUFAs), which are found ubiquitously in the plant kingdom. Bryophytes are also rich in C20 and C22 long-chain polyunsaturated fatty acids (LCPUFAs), which are found only at low levels in some vascular plants but are abundant in organisms of other kingdoms, including animals. The existence of bioactive jasmonates derived from LCPUFAs is currently unknown. Here, we describe the identification of an OPDA-like molecule derived from a C20 fatty acid (FA) in the liverwort Marchantia polymorpha (Mp), which we term (5Z,8Z)-10-(4-oxo-5-((Z)-pent-2-en-1-yl)cyclopent-2-en-1-yl)deca-5,8-dienoic acid (C20-OPDA). This molecule accumulates upon wounding and, when applied exogenously, can activate known Coronatine Insensitive 1 (COI1) -dependent and -independent jasmonate responses. Furthermore, we identify a dn-OPDA-like molecule (Δ4-dn-OPDA) deriving from C20-OPDA and demonstrate it to be a ligand of the jasmonate coreceptor (MpCOI1-Mp Jasmonate-Zinc finger inflorescence meristem domain [MpJAZ]) in Marchantia. By analyzing mutants impaired in the production of LCPUFAs, we elucidate the major biosynthetic pathway of C20-OPDA and Δ4-dn-OPDA. Moreover, using a double mutant compromised in the production of both Δ4-dn-OPDA and dn-OPDA, we demonstrate the additive nature of these molecules in the activation of jasmonate responses. Taken together, our data identify a ligand of MpCOI1 and demonstrate LCPUFAs as a source of bioactive jasmonates that are essential to the immune response of M. polymorpha.Peer reviewe
    corecore