162 research outputs found

    Immersive education: What does the future hold? J.UCS special issue

    Get PDF

    Stringy instanton corrections to N=2 gauge couplings

    Full text link
    We discuss a string model where a conformal four-dimensional N=2 gauge theory receives corrections to its gauge kinetic functions from "stringy" instantons. These contributions are explicitly evaluated by exploiting the localization properties of the integral over the stringy instanton moduli space. The model we consider corresponds to a setup with D7/D3-branes in type I' theory compactified on T4/Z2 x T2, and possesses a perturbatively computable heterotic dual. In the heteoric side the corrections to the quadratic gauge couplings are provided by a 1-loop threshold computation and, under the duality map, match precisely the first few stringy instanton effects in the type I' setup. This agreement represents a very non-trivial test of our approach to the exotic instanton calculus.Comment: 63 pages, 5 figures. V2: final version with minor corrections published on JHEP05(2010)10

    Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    Get PDF
    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP published versio

    Simplifying one-loop amplitudes in superstring theory

    Get PDF
    We show that 4-point vector boson one-loop amplitudes, computed in ref.[1] in the RNS formalism, around vacuum configurations with open unoriented strings, preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward identities, in that they vanish for non MHV configurations (++++) and (-+++). In the MHV case (--++) we drastically simplify their expressions. We then study factorisation and the limiting IR and UV behaviour and find some unexpected results. In particular no massless poles are exposed at generic values of the modular parameter. Relying on the supersymmetric properties of our bosonic amplitudes, we extend them to manifestly supersymmetric super-amplitudes and compare our results with those obtained in the D=4 hybrid formalism, pointing out difficulties in reconciling the two approaches for contributions from N=1,2 sectors.Comment: 38 pages plus appendice

    Exotic particles below the TeV from low scale flavour theories

    Get PDF
    A flavour gauge theory is observable only if the symmetry is broken at relatively low energies. The intrinsic parity-violation of the fermion representations in a flavour theory describing quark, lepton and higgsino masses and mixings generically requires anomaly cancellation by new fermions. Benchmark supersymmetric flavour models are built and studied to argue that: i) the flavour symmetry breaking should be about three orders of magnitude above the higgsino mass, enough also to efficiently suppress FCNC and CP violations coming from higher-dimensional operators; ii) new fermions with exotic decays into lighter particles are typically required at scales of the order of the higgsino mass.Comment: 19 pages, references added, one comment and one footnote added, results unchange

    Inflation with Non-minimal Gravitational Couplings and Supergravity

    Get PDF
    We explore in the supergravity context the possibility that a Higgs scalar may drive inflation via a non-minimal coupling to gravity characterised by a large dimensionless coupling constant. We find that this scenario is not compatible with the MSSM, but that adding a singlet field (NMSSM, or a variant thereof) can very naturally give rise to slow-roll inflation. The inflaton is necessarily contained in the doublet Higgs sector and occurs in the D-flat direction of the two Higgs doublets.Comment: 13 pages, 1 figur

    B-L Cosmic Strings in Heterotic Standard Models

    Full text link
    E_{8} X E_{8} heterotic string and M-theory, when compactified on smooth Calabi-Yau manifolds with SU(4) vector bundles, can give rise to softly broken N=1 supersymmetric theories with the exact matter spectrum of the MSSM, including three right-handed neutrinos and one Higgs-Higgs conjugate pair of supermultiplets. These vacua have the SU(3)_{C} X SU(2)_{L} X U(1)_{Y} gauge group of the standard model augmented by an additional gauged U(1)_{B-L}. Their minimal content requires that the B-L symmetry be spontaneously broken by a vacuum expectation value of at least one right-handed sneutrino. The soft supersymmetry breaking operators can induce radiative breaking of the B-L gauge symmetry with an acceptable B-L/electroweak hierarchy. In this paper, it is shown that U(1)_{B-L} cosmic strings occur in this context, potentially with both bosonic and fermionic superconductivity. We present a numerical analysis that demonstrates that boson condensates can, in principle, form for theories of this type. However, the weak Yukawa and gauge couplings of the right-handed sneutrino suggests that bosonic superconductivity will not occur in the simplest vacua in this context. The electroweak phase transition also disallows fermion superconductivity, although substantial bound state fermion currents can exist.Comment: 41 pages, 5 figure

    FCNC Processes from D-brane Instantons

    Get PDF
    Low string scale models might be tested at the LHC directly by their Regge resonances. For such models it is important to investigate the constraints of Standard Model precision measurements on the string scale. It is shown that highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic decays of the D0-meson provide non-negligible lower bounds on both the perturbatively and surprisingly also non-perturbatively induced string theory couplings. We present both the D-brane instanton formalism to compute such amplitudes and discuss various possible scenarios and their constraints on the string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file adde

    Un-oriented Quiver Theories for Majorana Neutrons

    Get PDF
    In the context of un-oriented open string theories, we identify quivers whereby a Majorana mass for the neutron is indirectly generated by exotic instantons. We discuss two classes of (Susy) Standard Model like quivers, depending on the embedding of SU(2)_W in the Chan-Paton group. In both cases, the main mechanism involves a vector-like pair mixing through a non-perturbative mass term. We also discuss possible relations between the phenomenology of Neutron-Antineutron oscillations and LHC physics in these models. In particular, a vector-like pair of color-triplet scalars or color-triplet fermions could be directly detected at LHC, compatibly with n-\bar{n} limits. Finally we briefly comment on Pati-Salam extensions of our models.Comment: More comments on phenomenology and fluxes, Re-discussion of SM-quivers compatible with n-cycles conditions Version accepted by JHE

    The Conformal Sector of F-theory GUTs

    Full text link
    D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural hidden sectors for particle phenomenology. We find that coupling the probe to the MSSM yields a new class of N = 1 conformal fixed points with computable infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes with the strongly coupled sector in the sense that the MSSM fields pick up small exactly computable anomalous dimensions. Additionally, we find that although the states of the probe sector transform as complete GUT multiplets, their coupling to Standard Model fields leads to a calculable threshold correction to the running of the visible sector gauge couplings which improves precision unification. We also briefly consider scenarios in which SUSY is broken in the hidden sector. This leads to a gauge mediated spectrum for the gauginos and first two superpartner generations, with additional contributions to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte
    corecore