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1 Introduction

The idea that a large non-minimal coupling of scalar fields to gravity might play an im-

portant role in inflation is clearly worth exploring. (For an early example see ref. [1]).

In particular, there has been recent interest [2]–[11] in the economical possibility that the

standard model (SM) Higgs H can be the relevant scalar; the action S is

S =

∫

d4x
√−g

[

M2
P R − ξRH†H + LSM + · · ·

]

(1.1)

where R is the Ricci scalar, and ξ is a dimensionless coupling constant, assumed positive,1

and LSM is the Lagrangian of the SM, generalized to a nontrivial background spacetime

obtained by replacing the flat-space metric ηµν with the curved space metric gµν . Classically,

for large enough values of ξ and h, viz.,

ξh2 & M2
P ≫ h2, (1.2)

(where H = (0, h)T ), it transpires that the scalar potential is nearly flat and the standard

slow-roll approximation is possible. The issue of whether this classical analysis remains

valid as an effective quantum field theory for field values in the range eq. (1.2) is a matter

of debate at present. On the one hand, there are some [6, 7] who argue that, as an

effective field theory, the full action eq. (1.1) must include higher dimensional operators,

such as ξ2(H†H)6/M2
P , so that one would expect the theory to work up to an energy scale

Λ = MP /ξ, which is far below Λ = MP /
√

ξ, the regime suggested by eq. (1.2).

On the other hand, others argue the effective field theory works within the regime in

eq. (1.2) for a variety of reasons. One such argument [1, 4, 8, 9] is that loops involving

1Here, the action has been expressed in the Jordan frame; one may transform to the Einstein frame by

a conformal transformation.
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virtual Higgs are suppressed because their propagators are modified from ordinary pertur-

bation theory for large values of the Higgs field. The treatment of gravity as a classical

background may also be challenged. One would normally expect that the feedback on the

metric would become strong on scales of the order of MP , but one may hope [1, 2] that,

in some models, the the energy density associated with Higgs remains small compared to

M4
P , even for h > O(MP ), provided it is not very much larger, say h . O(10MP ). On the

other hand, Higgs-graviton scattering would seem to become strong or to violate unitarity

for energies E ∼ MP /ξ [6, 7]. We will not address this issue directly in this paper, but we

will return to it again in our conclusions.

The occurrence of such non-minimal couplings of matter fields to the background

curvature is a fact of life in the SM, because the notion of minimal coupling (ξ = 0) is

only valid classically. In quantum field theory, the renormalized ξ runs, i.e, is a function

of a scale parameter (ξ = ξ(µ)) for which ξ = 0 is not a fixed point [12, 13]. Thus, the

“minimal theory” is at best an approximation to cases where the contributions of terms

like the ξ term above may be neglected.

Whether or not perturbation theory remains viable in the scenario, the scales of interest

are large compared to the electroweak unification scale, so that the SM becomes unnatural,

suffering also other apparent shortcomings such as unsatisfactory grand unification and

lack of a suitable Dark Matter candidate. The latter issue is addressed, for example, in

refs. [14, 15] by adding a singlet to the standard model. More attractive alternatives to

the SM above the TeV-scale are supersymmetric extensions of SM, which overcome the

three most glaring deficiencies of the SM mentioned. An obvious question is whether the

inflationary scenario described above survives in such supersymmetric models, and, if so,

what their properties are. In this paper, we shall consider the MSSM and a simple extension

with an additional singlet field (NMSSM), with which we will assume the reader is familiar

(for a review see ref. [16]).

An outline of the remainder of this paper is as follows: in the next section, we review the

standard form of supergravity and then consider the addition of a non-minimal interaction

analogous to the above. In section 3, we apply this formalism to the MSSM, following in

section 4 with the NMSSM. Section 5 contains an analysis of the slow roll parameters in

the one successful scenario that we identified. In section 6, we restate our conclusions and

discuss issues for future work, commenting on some dramatic differences from the SM to

be anticipated for radiative corrections resulting from supersymmetry.

2 Non-minimal couplings in supergravity

Although particle physics generally ignores gravity in generalizing to supersymmetry, its

inclusion is mandatory in the present context. Thus, the natural starting point is not

global supersymmetry but the modification of the Lagrangian for supergravity2 coupled to

a multiplet of chiral superfields Φ:

L = −6

∫

d2Θ E
[

R − 1

4
(D2 − 8R)Φ†Φ + P (Φ)

]

+ h.c. + gauge terms. (2.1)

2Our notation and conventions follow Wess and Bagger [17], and from now on we set MP = 1.
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where E is the vierbein multiplet, R is the curvature multiplet containing the scalar cur-

vature in its Θ2 component, and P (Φ) is the superpotential. For our purposes, we will not

need the explicit form of the gauge field contributions.

To extend eq. (1.1) to the supersymmetric case we replace eq. (2.1) by

Lχ = −6

∫

d2Θ E
[

R + X(Φ)R − 1

4
(D2 − 8R)Φ†Φ + P (Φ)

]

+ h.c. + gauge terms (2.2)

where X(Φ) is quadratic in Φ, with coefficients which are dimensionless coupling constants.

We shall discuss examples below, but an immediate consequence of SUSY is that the gauge

invariant function X(Φ) is a function of the chiral superfields Φ only and not Φ†. A second

consequence is that, by the non-renormalization theorem, the various monomials in X(Φ)

will (in a similar manner to those in the superpotential P (Φ)) not be generated through

radiative corrections if absent from the classical action (in contrast to the case of the SM

ξ from eq. (1.1)).

The scalar potential in the Einstein frame for the theory defined by eq. (2.1) is given by

V (φ, φ∗) = eG
[

Gi(G
−1)ij∗Gj∗ − 3

]

+ VD(φ, φ∗)

= eK
[

(K−1)ij∗DiP (DjP )∗ − 3PP ∗
]

+ VD(φ, φ∗) (2.3)

where G = K + ln(PP ∗), K(φ, φ∗) is the Kähler potential, and the D-terms VD(φ, φ∗) will

be discussed below. We will take K to have the canonical form

K = −3 ln(−Ω/3), (2.4)

where

Ω = φ∗
i φi − 3. (2.5)

In eq. (2.3), DiP = ∂iP + KiP, etc.

One can show that the effect of the non-minimal couplings on the scalar potential,

generalising from eq. (2.1) to eq. (2.2), is simply to replace Ω in eq. (2.5) by

Ωχ = φ∗
i φi − 3 − 3

2
(X(φ) + h.c.). (2.6)

Let us turn to the D-term. In general, this takes the form (for a simple group with

gauge coupling g)

VD =
g2

2
Ref−1

ab Gi(T
a)ijφjGk(T b)klφl, (2.7)

where fab is associated with the kinetic energy of the gauge field and, therefore, must be

a holomorphic function of φi, and where φi transform according to a representation T a of

the gauge group. Noting that

∂iP (T a)ijφj = ∂iX(T a)ijφj = 0 (2.8)

by gauge invariance, and assuming for simplicity the canonical form fab = δab, we find

VD =
g2

2

9

Ω2
χ

(φ∗T aφ)2 (2.9)

– 3 –
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Thus in the MSSM, the D−terms are

VD =
9

Ω2
χ





g′2

8

(

H†
1
H1 − H†

2
H2

)2

+
g2

8





∑

i=1,2

H†
i ~τHi





2

 , (2.10)

where H1 and H2 are the two Higgs doublets, and ~τ are the Pauli matrices.

The behavior of the potential depends in detail on the choice of superpotential P (φ),

but we will be interested in directions in field space in which the potential is approximately

constant for large values of the Higgs fields.

3 MSSM

Let us begin by considering the effect of eq. (2.6) on the scalar potential for the MSSM.

The unique possibility for X in this case is

X = χH1H2, (3.1)

where χ is constant; and, dropping terms involving fields that do not appear in X, the

most general possibility for the superpotential P is

P = Λ + µH1H2, (3.2)

where Λ and µ are constants. So P contains no dimensionless couplings. One cannot in

general choose both µ and χ to be real; however, we will ignore this potential source of

CP -violation in what follows, since, as we shall soon see, this case does not yield a suitable

inflationary regime. Without loss of generality, we may choose χ > 0.

Let us calculate the potential in the electromagnetism-preserving direction

H1 = (h1, 0)
T ,H2 = (0, h2)

T , (3.3)

where we may assume h1,2 are real. If, as usual, we define h1 = h cos β and h2 = h sin β,

we can then write

P = Λ + µh2 sin(2β)/2, X = χh2 sin(2β)/2. (3.4)

We shall be interested in the case when χ ≫ 1, but h2 ≪ 1, so we must have χ sin(2β) ≥ 0

to avoid a singularity in Ωχ. Since χ > 0, we must take 0 ≤ β ≤ π/2(mod π). We find

V = −12
(6Λ + µh2 sin 2β)2 + 12χµh2(3Λ + µh2 sin 2β) − 12µ2h2

(3χh2 sin 2β + 6 − 2h2)2(3χ2h2 − 2χh2 sin 2β + 4)
+ VD (3.5)

where

VD =
9(g2 + g′2)h4 cos2 2β

2(3χh2 sin 2β + 6 − 2h2)2
. (3.6)

It is easy to see that, for fixed β in the regime

χh2 ≫ 1 ≫ h2 (3.7)

– 4 –
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the potential is dominated by the D-term,

VD ≈ g2 + g′2

2χ2
cot2 2β, (3.8)

except very near the D-flat direction, more precisely, for sin 2β ≫ 2/(χh2). It is clear,

however, that slow-roll conditions (to be reviewed below) will not be satisfied in these

circumstances, because
∣

∣

∣

1

VD

∂VD

∂β

∣

∣

∣
=

8

| sin 4β| (3.9)

cannot be made small.

On the other hand, in the D-flat direction where tan β = 1, both VD and ∂VD/∂β

vanish, and ∂2VD/∂2β > 0. Thus, this is a minimum stable against fluctuations in β.

Then, in the regime described in eq. (3.7), we have

V = −2[3Λ2 + 2µχh2(2µh2 + 3Λ)]

3χ4h6
, (3.10)

or for Λ = 0, V = −8µ2/(3χ3h2). In either case, V → 0 through negative values, and so is

unsuitable for an inflationary scenario.

4 NMSSM

Evidently, the failure of this MSSM to emulate the result of a nonminimal coupling in the

nonsupersymmetric case is because of the absence of a cubic term in the superpotential,

leading to the absence (in the D-flat direction) of an analog to the dimensionless self-

interaction λ(φ†φ)2. (Of course inclusion of the usual Yukawa cubic terms in P would lead

to quartic terms in V , but we need quartic terms that contain only fields that occur in X

in order to produce a suitable flat potential). It is therefore natural to turn to the NMSSM,

which clearly can provide a cure to this behavior. Thus we consider the superpotential

P = λSH1H2 +
ρ

3
S3, (4.1)

where S is a gauge singlet. There are then two natural choices for X(φ), to wit

X = χH1H2 or (4.2)

X = χS2. (4.3)

Note that in the case of eq. (4.2) we can choose both χ and λ to be real.

If we choose eq. (4.2) and consider the case when S is small but h is large,

S = 0,H1 = (h1, 0)
T ,H2 = (0, h2)

T (4.4)

then we find

V =
9(2λ2h4 sin2 2β + (g2 + g′2)h4 cos2 2β)

2(3χh2 sin 2β + 6 − 2h2)2
(4.5)

– 5 –
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Figure 1. Plot of V against h.

which, taking the the eq. (3.7) limit, becomes

V ≈
(

λ

χ

)2

+
g2 + g′2

2χ2
cot2 2β, (4.6)

which is (of course) minimized for tan β = 1. For this value of tan β, eq. (4.5) gives

V =
9λ2h4

(3χh2 + 6 − 2h2)2
, (4.7)

a smoothly increasing function of h2, precisely the behavior that we can expect to yield

inflation. This is the supersymmetric analog of the model of ref. [2]. We plot V in figure 1,

for ξ = 5 × 104 and λ = 1.

On the other hand, if we choose eq. (4.3) and h small, then we find3

V = 36|ρ2| [χ(S2 + S∗2) − 2]S2S∗2

[3χ(S2 + S∗2) − 2SS∗ + 6]2[χ(S2 + S∗2) − 6χ2SS∗ − 2]
. (4.8)

Writing S = seiθ we have

V = 9|ρ2| (χs2 cos 2θ − 1])s4

(3χs2 cos 2θ − s2 + 3)2(χs2 cos 2θ − 3χ2s2 − 1]
(4.9)

which in the limit χs2 ≫ 1 ≫ s2 gives

V = − |ρ2|
3χ3 cos 2θ

. (4.10)

3In principle, we cannot choose both ρ and χ real. For our purposes, it is convenient to take χ real but

ρ possibly complex.
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Thus for fixed θ, V approaches a constant, but if χ cos 2θ > 0 then this constant is negative.

If we choose χ cos 2θ < 0 in order to obtain V > 0 then we see from eq. (4.9) that as s

reduces, then V increases, and we eventually encounter a pole in V , when

χs2 cos 2θ = −1 + s2/3 (4.11)

Thus this case is not suitable for inflation.

5 Slow-roll analysis

Let us pursue the more promising case of eq. (4.7) in more detail and calculate the slow-

roll parameters. Evidently these relate to fluctuations and so we must consider the kinetic

energies of the relevant fields. It is easy to show using eq. (2.6) that in general the scalar

kinetic energy takes the form

Lkin = −e(Kχ)ij∗∂mφi∂
mφ∗

j (5.1)

where e is the vierbein and

Kχ = −3 ln(−Ωχ/3). (5.2)

Let us now briefly review the slow-roll paradigm (see for example ref. [18]). Suppose the

action that describes the inflaton φ takes the form

S =

∫

d4x e

[

−1

2
f(φ)∂mφ∂mφ − V (φ)

]

. (5.3)

Then neglecting its spatial variation, the equation of motion for φ is

f(φ)φ̈ + 3fHφ̇ +
1

2
f ′(φ)φ̇2 +

dV

dφ
= 0 (5.4)

where

H2 =
1

3

(

1

2
f(φ)φ̇2 + V (φ)

)

. (5.5)

Then the slow-roll parameter ǫ is given by

ǫ = − Ḣ

2H2
≈ 1

2f

(

V ′

V

)2

(5.6)

where the latter approximation is valid if f(φ)φ̈ and f ′(φ)φ̇2 can both be safely neglected

in eq. (5.4).

The number of e-folds before inflation ends is given by

N =

∫ φ

φend

H

φ̇
dφ ≈

∫ φ

φend

fV

V ′
dφ (5.7)

and the second slow-roll parameter η is given by

η =
V

′′

fV
. (5.8)

– 7 –
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In the slow-roll regime, ǫ, |η| ≪ 1 and slow-roll ends when ǫ(φend) ≈ 1.

We now apply this formalism to the NMSSM doublet case. We first suppose that

tan β = 1, that is we consider the D-flat direction. From eqs. (2.6), (3.3), (4.2), (5.1) we

find that for large χ (as defined in eq. (3.7)) the dominant contribution to the inflaton

kinetic energy term is

Lkin = 3e

(

∂mh

h

)2

. (5.9)

Armed with this result we immediately obtain (given eq. (3.7)) from eqs. (5.6), (5.7)

and (5.8) that

ǫ =
16

3χ2h4
, (5.10)

N =
3χ(h2 − h2

end
)

8
, (5.11)

η = − 4

χh2
. (5.12)

We see that the slow-roll conditions ǫ, |η| ≪ 1 are satisfied given eq. (3.7). Moreover it is

easy to verify that the approximations made in neglecting f(φ)φ̈ and f ′(φ)φ̇2 in eq. (5.4)

are well justified. The results are similar to those of ref. [5]. For ǫ(hend) ∼ 1, and using

χ ∼ 5 × 104 as in ref. [5], we obtain hend ∼ 0.7 × 10−2MP , in the neighborhood of the

GUT scale.

Suppose that tan β 6= 1 at large fixed h. Might it be that the slow-roll conditions are

satisfied with tan β → 1? In fact it is easy to show that

ǫβ ∼
(

1

VD

∂VD

∂β

)2

∼
(

4(g2 + g′2) cot 2β

2λ2 sin2 2β + (g2 + g′2) cos2 2β

)2

(5.13)

from which one sees that as β → π/4, ǫβ ∼ [(g2 + g′2)(π − 4β)/λ2]2. Thus we see that,

unlike in the MSSM case, models with a sufficiently slow approach to the D-flat direction

might be entertained.

6 Conclusions

In conclusion, we have demonstrated that, in the presence of non-minimal gravitational

interactions in the NMSSM, but not in the MSSM, there is contained in the Higgs sector a

viable inflaton candidate, as in the SM. Although we have not yet completed an analysis of

the running of the couplings in this model, we remarked earlier that the non-renormalization

properties of SUSY and SUGRA models make the behavior of the non-minimal couplings

different. In particular, unlike in the nonsupersymmetric case, the beta function for χ will

therefore have a fixed point at χ = 0. It would be interesting to implement refinements

taking into account renormalisation group evolution described (and debated) for the SM

case in refs. [2]–[11], and explore the consequences for the Higgs spectrum; in particular,

perhaps in the MNMSSM [19] where ρ = 0, the spectrum is more constrained.

– 8 –
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Given that these calculations seem to be concerned with the dynamics in the region

beyond the GUT scale, one question is whether the same sort of results can be obtain within

supersymmetric GUTS [20]–[23] such as SU(5) or SO(10). Does inflation end somewhere

below the (reduced) Planck scale MP ≃ 2.4 × 1018 GeV but above the GUT scale MU ≃
10−2MP ? Is the dynamics of inflation viable over such a relatively narrow range of energies

as this?

The most important unanswered question is whether these calculations make sense

from the point of view of effective quantum field theory. As we discussed, this is a point

of controversy in the literature, and we hope to return to this issue in the future. It is

partly a question of the range of scales over which perturbation theory can be used, and it

is partly a question of just what is the expansion parameter. We certainly have assumed

that it makes sense to use the nonpolynomial potential on energy scales
√

ξh & MP in the

Einstein frame associated with changes in the gravitational constant in the Jordan frame,

where the action has the familiar polynomial form. Even if the arguments were correct

that, in the SM, this model for inflation is unnatural, will the situation be improved as a

result of supersymmetry? We leave this for future investigation.
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