424 research outputs found

    Occupational Risk Factors and Hypertensive Disorders in Pregnancy: A Systematic Review

    Get PDF
    Hypertensive disorders in pregnancy (HDP), including gestational hypertension (GH) and preeclampsia (PE), characterize a major cause of maternal and prenatal morbidity and mortality. In this systematic review, we tested the hypothesis that occupational factors would impact the risk for HDP in pregnant workers. MEDLINE, Scopus, and Web of Knowledge databases were searched for studies published between database inception and 1 April 2021. All observational studies enrolling > 10 pregnant workers and published in English were included. Un-experimental, non-occupational human studies were excluded. Evidence was synthesized according to the risk for HDP development in employed women, eventually exposed to chemical, physical, biological and organizational risk factors. The evidence quality was assessed through the Newcastle–Ottawa scale. Out of 745 records identified, 27 were eligible. No definite conclusions could be extrapolated for the majority of the examined risk factors, while more homogenous data supported positive associations between job-strain and HDP risk. Limitations due to the lack of suitable characterizations of workplace exposure (i.e., doses, length, co-exposures) and possible interplay with personal issues should be deeply addressed. This may be helpful to better assess occupational risks for pregnant women and plan adequate measures of control to protect their health and that of their childre

    Application of an innovative model for the risk management of covid-19 in a multinational manufacturing company

    Get PDF
    The COVID-19 incidence in 61 manufacturing plants in Europe (EU), North America (NA) and Latin-America (LATAM) was compared with the incidence observed in the countries where the plants are located in order to evaluate the application of an innovative model for COVID-19 risk management. Firstly, a network of local and global teams was created, including an external university occupational physician team for scientific support. In July 2020, global prevention guidelines for the homogenous management of the pandemic were applied, replacing different site or regional procedures. A tool for COVID-19 monitoring was implemented to investigate the relationship between the incidence rates inside and outside the plants. In the period of May–November 2020, 565 confirmed cases (EU 330, NA 141, LATAM 94) were observed among 20,646 workers with different jobs and tasks, and in the last two months 85% EU and 70% NA cases were recorded. Only in 10% of cases was a possible internal origin of the contagion not excluded. In the EU and NA, unlike LATAM, the COVID-19 incidence rates inside the sites punctually followed the rising trend outside. In conclusion, the model, combining a global approach with the local application of the measures, maintains the sustainability in the manufacturing industry

    An Exploratory Assessment of Applying Risk Management Practices to Engineered Nanomaterials

    Get PDF
    The widespread industrial application of nanotechnology has increased the number of workers exposed to engineered nanomaterials (ENMs), but it is not clear to what extent prevention guidance is practiced. Our aim was to explore the extent that companies manufacturing and/or using ENMs apply risk assessment and management measures. Thirty-four companies were surveyed with an international 35-item questionnaire investigating company and workforce features, types of ENM handled, and risk evaluation and preventive measures adopted. Among participating companies, 62% had a maximum of 10 employees. Metal-based nanomaterials were most frequently identified (73%). Environmental monitoring was performed by 41% of the companies, while engineering exposure controls were approximately reported by 50%. Information and training programs were indicated by 85% of the sample, only 9% performed specific health surveillance for ENM workers. Personal protective equipment primarily included gloves (100%) and eye/face protection (94%). This small-scale assessment can contribute to the limited amount of published literature on the topic. Future investigations should include a greater number of companies to better represent ENM workplaces and a direct access to industrial settings to collect information on site. Finally, deeper attention should be paid to define standardized frameworks for ENM risk assessment that may guide nano-specific preventive actions

    Impact of COVID-19 emergency on the psychological well-being of susceptible individuals

    Get PDF
    The current pandemic has exerted an unprecedented psychological impact on the world population, and its effects on mental health are a growing concern. The present study aims to evaluate psychological well-being (PWB) during the COVID-19 crisis in university workers with one or more diseases likely to increase the risk of severe outcomes in the event of SARS-CoV-2 infection, defined as susceptible. 210 susceptible employees of an Italian University (aged 25-71 years) were recruited during the COVID-19 second wave (October-December 2020). A group comprising 90 healthy university employees (aged 26-69 years) was also recruited. The self-report Psychological General Well Being Index (PGWBI) was used to assess global PWB and the influence on six sub-domains: anxiety, depressed mood, positive well-being, self-control, general health, and vitality. We applied non-linear dimension-reduction techniques and regression methods to 45 variables in order to assess the main demographic, occupational, and general-health-related factors predicting PWB during the COVID-19 crisis. PGWBI score was higher in susceptible than in healthy workers, both as total score (mean 77.8 vs 71.3) and across almost all subscales. Age and jobs involving high social interaction before the pandemic were inversely associated with the PWB total score, general health, and self-control subscores. The current data suggest no decline in PWB during the second wave of COVID-19 health emergency in susceptible individuals of working age. Critically, higher risk for mental-health issues appears to be inversely related to age, particularly among individuals deprived of their previous level of social interaction at work

    Occupational Exposure to Metal Engineered Nanoparticles: A Human Biomonitoring Pilot Study Involving Italian Nanomaterial Workers

    Get PDF
    Advances in nanotechnology have led to an increased use of engineered nanoparticles (ENPs) and the likelihood for occupational exposures. However, how to assess such exposure remains a challenge. In this study, a methodology for human biomonitoring, based on Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS), was developed as a tool to assess the ENPs exposure of workers involved in nanomaterial activities in two Italian Companies. The method was validated for size and number concentration determination of Ag, Au, In2O3, Ir, Pd, Pt, and TiO2 NPs in urine and blood samples. The results showed the presence of In2O3 NPs in blood of exposed workers (mean, 38 nm and 10,371 particles/mL), but not in blood of controls. Silver, Au, and TiO2 NPs were found in urine (mean, Ag 29 nm and 16,568 particles/mL) or blood (mean, Au 15 nm and 126,635 particles/mL; TiO2 84 nm and 27,705 particles/mL) of workers, though these NPs were found also in controls. The presence of ENPs in both workers and controls suggested that the extra-professional exposure is a source of ENPs that cannot be disregarded. Iridium, Pd, and Pt NPs were not detected neither in blood nor in urine. Overall, the findings provided a rational basis to evaluate the exposure assessment to ENPs in cohorts of workers as part of risk assessment and risk management processes in workplaces

    Workers’ exposure assessment during the production of graphene nanoplatelets in r&d laboratory

    Get PDF
    Widespread production and use of engineered nanomaterials in industrial and research settings raise concerns about their health impact in the workplace. In the last years, graphene-based nanomaterials have gained particular interest in many application fields. Among them, graphene nanoplatelets (GNPs) showed superior electrical, optical and thermal properties, low-cost and availability. Few and conflicting results have been reported about toxicity and potential effects on workers’ health, during the production and handling of these nanostructures. Due to this lack of knowledge, systematic approaches are needed to assess risks and quantify workers’ exposure to GNPs. This work applies a multi-metric approach to assess workers’ exposure during the production of GNPs, based on the Organization for Economic Cooperation and Development (OECD) methodology by integrating real-time measurements and personal sampling. In particular, we analyzed the particle number concentration, the average diameter and the lung deposited surface area of airborne nanoparticles during the production process conducted by thermal exfoliation in two different ways, compared to the background. These results have been integrated by electron microscopic and spectroscopic analysis on the filters sampled by personal impactors. The study identifies the process phases potentially at risk for workers and reports quantitative information about the parameters that may influence the exposure in order to propose recommendations for a safer design of GNPs production process

    Quantification of interacting cognate odorants with olfactory receptors in nanovesicles

    Get PDF
    This study aims to improve our understanding of the interaction between olfactory receptors and odorants to develop highly selective biosensing devices. Natural nanovesicles (NVs) from Saccharomyces cerevisiae, ~100 nm in diameter, carrying either the human OR17-40 or the chimpanzee OR7D4 olfactory receptor (OR) tagged with the c-myc epitope at their N-terminus, are presented as model systems to quantify the interaction between odorant and olfactory receptors. The level of expression of olfactory receptors was determined at individual NVs using a novel competitive ELISA immunoassay comparing the values obtained against those from techniques involving the solubilization of cell membrane proteins and the identification of c-myc-carrying receptors. Surface Plasmon Resonance (SPR) measurements on L1 Biacore chips indicate that cognate odorants bind to their Ors, thereby quantifying the approximate number of odorants that interact with a given olfactory receptor. The selectivity of OR17-40-carrying NVs towards helional and OR7D4-carrying NVs towards androstenone has been proven in cross-check experiments with non-specific odorant molecules (heptanal and pentadecalactone, respectively) and in control receptors

    Oxidative stress and DNA damage in agricultural workers after exposure to pesticides

    Get PDF
    Background: Recent epidemiological studies on workers describe that exposure to pesticides can induce oxidative stress by increased production of free radicals that can accumulate in the cell and damage biological macromolecules, for example, RNA, DNA, DNA repair proteins and other proteins and/or modify antioxidant defense mechanisms, as well as detoxification and scavenger enzymes. This study aimed to assess oxidative stress and DNA damage among workers exposed to pesticides. Methods: For this purpose, 52 pesticide exposed workers and 52 organic farmers were enrolled. They were assessed: the pesticide exposure, thiobarbituric acid reactive substances (TBARS), total glutathione (TG), oxidized glutathione levels (GSSG), and 8-oxo-7,8-dihydro-2\u2032-deoxyguanosine (8-oxodG), levels. Results: Correlation between pesticide exposure was positively associated with high TBARS and 8-oxodG levels (p < 0.001). A negative association was founded with TG and GSSG and pesticide exposure. Conclusions: The present investigation results seem to indicate a mild augment in oxidative stress associated with pesticide exposure, followed by an adaptive response to increase the antioxidant defenses to prevent sustained oxidative adverse effects stress

    The questionnaire design process in the European Human Biomonitoring Initiative (HBM4EU)

    Get PDF
    BACKGROUND: Designing questionnaires is a key point of epidemiological studies assessing human exposure to chemicals. The lack of validated questionnaires can lead to the use of previously developed and sub-optimally adapted questionnaires, which may result in information biases that affect the study's validity. On this ground, a multidisciplinary group of researchers developed a series of tools to support data collection within the HBM4EU initiative. The objective of this paper is to share the process of developing HBM4EU questionnaires, as well as to provide researchers with harmonized procedures that could help them to design future questionnaires to assess environmental exposures. METHODS: In the frame of the work package on survey design and fieldwork of the HBM4EU, researchers carried out procedures necessary for the development of quality questionnaires and related data collection tools. These procedures consisted of a systematic search to identify questionnaires used in previous human biomonitoring (HBM) studies, as well as the development of a checklist and evaluation sheet to assess the questionnaires identified. The results of these evaluations were taken into consideration for the development of the final questionnaires. RESULTS: The main points covered by each of the sections included in HBM4EU questionnaires are described and discussed in detail. Additional tools developed for data collection in the HBM4EU (e.g. non-responder questionnaire, satisfaction questionnaire, matrix-specific questionnaire) are also addressed. Special attention is paid to the limitations faced and hurdles overcome during the process of questionnaire development. CONCLUSIONS: Designing questionnaires for use in HBM studies requires substantial effort by a multidisciplinary team to guarantee that the quality of the information collected meets the study's objectives. The process of questionnaire development described herein will contribute to improve the harmonization of HBM studies within the social and environmental context of the EU countries
    • 

    corecore