28 research outputs found

    Transition and Stability of Copolymer Adsorption Morphologies on the Surface of Carbon Nanotubes and Implications on Their Dispersion

    Full text link
    In this study, the adsorption morphologies as well as stability and transitions of a commercial dispersant copolymer (BYK 9076) on the surface of multiwalled carbon nanotubes (MWCNTs) were studied using Fourier transform infrared and UV-vis spectroscopy, dynamic light scattering, and electron microscopy techniques. The results show that the dispersion of carbon nanotubes in ethanol does not increase continuously with increasing copolymer/CNT ratio, which is correlated with the adsorption morphologies of the copolymer on the CNT surface. At a ratio of copolymer/CNT below 0.5, the morphology is random, shifting to a hemimicelle structure at a ratio from 0.5 to 1.0 while at ratios above 1.0, a cylindrical pattern is seen. The hemimicelle morphology is able to prevent the agglomeration of CNTs when the CNT concentration increases to 8.7 mg/mL, while cylindrical morphology is more efficient and stable to provide dispersion of CNTs at higher concentrations of CNTs

    Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications

    No full text
    Adequately designed multiresponsive water-soluble graft copolymers were used to serve as a multifunctional polymeric platform for the encapsulation and transfer in aqueous media of hydrophobic magnetic nanoparticles (MNPs). The backbone of the graft copolymers was composed of hydrophilic sodium methacrylate units, hydrophobic dodecyl methacrylate units, and luminescent quinoline-based units, while either the homopolymer poly(N-isopropylacrylamide) or a poly(N,N-dimethylacrylamide-co-N-isopropylacrylamide) copolymer was used as thermosensitive pendent side chains. The polymeric platform forms micellar-type assemblies in aqueous solution, and exhibits pH-responsive luminescent properties and a lower critical solution temperature behavior in water. Depending on the design of the side chains, the cloud point temperatures were determined at 38 and 42 °C, close or slightly above body temperature (37 °C). Above the critical micelle concentration (CMC), both graft copolymers can effectively stabilize in aqueous media as magnetic colloidal superparticles (MSPs), oleylamine-coated MnFe2O4 MNPs, as well as 1:1 mixture of oleylamine-coated MnFe2O4 and CoFe2O4 MNPs. When CoFe2O4 particles were mixed with MnFeO4 in equal amounts, the specific loss power increased significantly, while an opposite trend was observed in the magnetic resonance imaging (MRI) studies, probably due to the anisotropy of cobalt. As a consequence, fine-tuning of the chemical structure of the copolymers and the composition of the MSPs can lead to materials that are able to act simultaneously as luminescent, hyperthermia, and contrast MRI agents. © 2016 American Chemical Society

    Magnetic colloidal superparticles of Co, Mn and Ni ferrite featured with comb-type and/or linear amphiphilic polyelectrolytes; NMR and MRI relaxometry

    No full text
    The ability to encapsulate hydrophobic ferrites in colloidal superparticle structures of an a-telechelic hexadecyl-functionalized poly(methacrylic acid) (C16H33-PMAA) polymer with a linear architecture was investigated and compared with that of two amphiphilic comb-type water-soluble copolymers, namely, P(ANa-co-DAAm) and P(MANa-co-DMA), which are comprised of a poly(sodium acrylate) or poly(sodium methacrylate) backbone and pendent dodecyl acrylamide or dodecyl methacrylate chains, respectively. In the case of C16H33-PMAA, the pH-sensitive self-assembly behavior, which was studied through Nile Red probing and TEM, was related to its encapsulation properties. Hydrophobic MFe2O4 nanoparticles coated with oleylamine (MFe2O4@OAm MNPs, where M = Co, Mn, Ni) with a similar shape and size (similar to 9 nm) and magnetization values of 87.4, 63.1 and 55.0 emu g(-1) for CoFe2O4@OAm, MnFe2O4@OAm and NiFe2O4@OAm, respectively, were successfully encapsulated into the hydrophobic cores of spherical micellar structures formed by the copolymers in an aqueous solution through a solvent mixing procedure. The synthesized magnetic colloidal superparticles fell in the static dephasing regime (SDR). NMR relaxivity measurements of MFe2O4@P(ANa-co-DAAm), MFe2O4@P(MANa-co-DMA) and MFe2O4@C16H33-PMAA at pH = 4.5 and pH = 7 (where M = Co, Mn, Ni) at 11.7 T were recorded and the transverse relaxivity (r(2)) (mM(-1) s(-1)) was determined. Among all, the CoFe2O4@polymers demonstrated the highest r(2) relaxivity values, ranging from 61.6 for CoFe2O4@C16H33-PMAA (pH = 7) to 316.0 mM(-1) s(-1) for CoFe2O4@P(ANa-co- DAAm). The relaxation efficiency (r(1) and r(2)) of CoFe2O4@P(ANa-co-DAAm) was investigated further by magnetic resonance imaging (MRI) at 1.5 T and 3 T and the r(2)/r(1) ratios were found to be 16.5 and 18.2, respectively, indicating its potential use as a T-2 contrast agent

    The correlation of right 2D:4D finger length ratio to the low-grade inflammation marker IL-6 in children: The healthy growth study

    No full text
    Background: Second to fourth digit ratio (2D:4D) is associated with cardiometabolic risk in adults. Aim: To examine the association of right 2D:4D with cardiovascular disease risk factors in children. Study design: Cross-sectional study. Subjects: A sample of 301 children (53.5% girls) aged 9-13 in Greece and their parents. Children who were sick during the previous week of examination (n = 44) were excluded from the analyses. Outcome measures: Socio-demographic (gestational age, birth weight, age, gender, maternal education level), anthropometric (body weight and height, finger length), clinical (pubertal stage, sickness during the previous week of the examination), blood [serum high sensitivity C-reactive protein (CRP), serum high sensitivity interleukin-6 (IL-6), serum leptin], lifestyle (dietary intake, maternal smoking during pregnancy) and physical fitness (handgrip strength) data were collected. CRP, IL-6 and leptin were measured with ELISA, using standard equipment and procedures, in accordance with manufacturers' instructions. Results: Full data were available for 257 children (52.1% girls). The rank values of right 2D:4D and IL-6 were included in the analyses. Right 2D:4D was correlated only with IL-6 at a bivariate level (r = 0.216, p = 0.012) in girls. At a linear multivariate level, this association remained significant, even after adjusting for several potential confounders such as age, Tanner stage, maternal education level, body mass index, maternal smoking during pregnancy, duration of pregnancy, protein-, carbohydrate-, fat-intake and physical fitness (β ± SE = 0.220 ± 0.066, p = 0.001). Conclusions: Right 2D:4D was found to be associated with IL-6 in girls. Right 2D:4D may be a valuable, simple screening tool of low-grade inflammation in children. © 2013 Elsevier Ltd
    corecore