1,075 research outputs found

    Investigation of the concept of beauty via a lock-in feedback experiment

    Full text link
    Lock-in feedback circuits are routinely used in physics laboratories all around the world to extract small signals out of a noisy environment. In a recent paper (M. Kaptein, R. van Emden, and D. Iannuzzi, paper under review), we have shown that one can adapt the algorithm exploited in those circuits to gain insight in behavioral economics. In this paper, we extend this concept to a very subjective socio-philosophical concept: the concept of beauty. We run an experiment on 7414 volunteers, asking them to express their opinion on the physical features of an avatar. Each participant was prompted with an image whose features were adjusted sequentially via a lock-in feedback algorithm driven by the opinion expressed by the previous participants. Our results show that the method allows one to identify the most attractive features of the avatar

    Understanding the role of protein glycation in the amyloid aggregation process

    Get PDF
    Protein function and flexibility is directly related to the native distribution of its structural elements and any alteration in protein architecture leads to several abnormalities and accumulation of misfolded proteins. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidosis characterized by the accumulation of amyloid aggregates both in the extracellular space of tissues and as intracellular deposits. Post-translational modifications are known to have an active role in the in vivo amyloid aggregation as able to affect protein structure and dynamics. Among them, a key role seems to be played by non-enzymatic glycation, the most unwanted irreversible modification of the protein structure, which strongly affects long-living proteins throughout the body. This study provided an overview of the molecular effects induced by glycation on the amyloid aggregation process of several protein models associated with misfolding diseases. In particular, we analyzed the role of glycation on protein folding, kinetics of amyloid formation, and amyloid cytotoxicity in order to shed light on the role of this post-translational modification in the in vivo amyloid aggregation process

    Hydroxytyrosol Prevents Doxorubicin-Induced Oxidative Stress and Apoptosis in Cardiomyocytes

    Get PDF
    Doxorubicin (Dox) is a highly effective chemotherapeutic agent employed in the handling of hematological and solid tumors. The effective use of Dox in cancer therapy has been seriously limited due to its well-known cardiotoxic side effects, mainly mediated by oxidative damage. Therefore, the identification of an effective and safe antagonist against Dox-induced cardiotoxicity remains a challenge. In this respect, as plant polyphenols have attracted considerable interest due to their antioxidant properties and good safety profile, hydroxytyrosol (HT), the major phenolic compound in olive oil, could be a potential candidate due to its remarkable antioxidant and anticancer powers. In this study, the effect of HT was tested on Dox-induced cardiotoxicity by using a combination of biochemical and cellular biology techniques. Interestingly, HT was able to counteract Dox-induced cytotoxicity in cardiomyocytes by acting on the SOD2 level and the oxidative response, as well as on apoptotic mechanisms mediated by Bcl-2/Bax. At the same time, HT did not to interfere with the antitumorigenic properties of Dox in osteosarcoma cells. This study identifies new, beneficial properties for HT and suggests that it might be a promising molecule for the development of additional therapeutic approaches aimed at preventing anthracycline-related cardiotoxicity and improving long-term outcomes in antineoplastic treatments

    Genetic Factors Involved in Sarcoidosis

    Get PDF

    Fiber-top atomic force microscope

    Get PDF
    We present the implementation of an atomic force microscope (AFM) based on fiber-top design. Our results demonstrate that the performances of fiber-top AFMs in contact mode are comparable to those of similar commercially available instruments. Our device thus represents an interesting\ud alternative to existing AFMs, particularly for applications outside specialized research laboratories, where a compact, user-friendly, and versatile tool might often be preferred

    Genetic polymorphisms in lung disease: bandwagon or breakthrough?

    Get PDF
    The study of genetic polymorphisms has touched every aspect of pulmonary and critical care medicine. We review recent progress made using genetic polymorphisms to define pathophysiology, to identify persons at risk for pulmonary disease and to predict treatment response. Several pitfalls are commonly encountered in studying genetic polymorphisms, and this article points out criteria that should be applied to design high-quality genetic polymorphism studies

    Experimental Study on a Laboratory Test Bench for Sea Wave Generation Systems

    Get PDF
    Abstract The paper presents a laboratory test bench specifically designed for sea wave generation systems. In particular a DC Micro Grid is realized to experimentally validate the energy performance of a PM Brushless ball screw actuator, during motor-regenerative operative conditions, which is representative of an oscillating body wave generation system. The proposed architecture is based on a DC bus, which features the integration of renewable energy sources and buffered storage systems, with the aim of smoothing the natural power fluctuations of wave energy generation systems. The wave generation is simulated in laboratory by controlling an electric motor, which is directly coupled with the PM brushless generator. The experimental validation phase is mainly devoted to verify the design criteria of the architecture scheme and the control strategies of the power fluxes related to power converters

    Computation and visualization of Casimir forces in arbitrary geometries: non-monotonic lateral forces and failure of proximity-force approximations

    Full text link
    We present a method of computing Casimir forces for arbitrary geometries, with any desired accuracy, that can directly exploit the efficiency of standard numerical-electromagnetism techniques. Using the simplest possible finite-difference implementation of this approach, we obtain both agreement with past results for cylinder-plate geometries, and also present results for new geometries. In particular, we examine a piston-like problem involving two dielectric and metallic squares sliding between two metallic walls, in two and three dimensions, respectively, and demonstrate non-additive and non-monotonic changes in the force due to these lateral walls.Comment: Accepted for publication in Physical Review Letters. (Expected publication: Vol. 99 (8) 2007

    Collaborating with Teaching Faculty on Transparent Assignment Design

    Get PDF
    In light of a campus-wide curricular change at the University of Nevada, Las Vegas (UNLV), the University Libraries created Faculty Institutes to build capacity for effective teaching and assessment practices campus-wide. The UNLV Libraries Faculty Institutes are multi-day workshops designed and delivered by librarians to help teaching faculty create courses and assignments that are research-rich and closely aligned with the newly launched General Education learning outcomes. This chapter provides the situational factors leading to the overhaul of General Education at UNLV and how librarians leveraged this opportunity to maximize their role as experts in information literacy and instructional design. This chapter also describes how librarians used instructional design principles for creating significant learning experiences1 and transparent assignment design2 to guide the development and delivery of the Faculty Institutes. Finally, we draw on our experiences to suggest that the interdisciplinarity and specialized skills of librarians make us particularly poised to be leaders of curricular transformation at our institutions
    • …
    corecore