149 research outputs found

    Why bean beer?

    Get PDF
    Beer can be a wholesome beverage, and the art of brewing beer has been intertwined with the development of civilised society for centuries. Today, the latest valuation of the economic value of beer (by accountants Ernst and Young in 2013), reported that Europe is the world’s biggest producer of beer with over 4,500 breweries delivering around 390 million hectolitres annually – which in plain English is 68,632,200,000 pints (since 1 hectolitre is a small spillage less than 176 imperial pints). The industry employs over 2 million people, and around 125,000 of these are employed in breweries themselves. It should also be no surprise then that sales generated 53 billion Euro, which is almost doubled again by the value added from the supply chain. Also, the EU brewing sector had a trade surplus (i.e. exports were greater than imports) to the value of 3 billion Euro in 2012. Beer is serious business

    Nitrogen fixation by common beans in crop mixtures is influenced by growth rate of associated species

    Get PDF
    Background: Legumes can fx atmospheric nitrogen (N) and facilitate N availability to their companion plants in crop mixtures. However, biological nitrogen fxation (BNF) of legumes in intercrops varies largely with the identity of the legume species. The aim of our study was to understand whether BNF and concentration of plant nutrients by common bean is infuenced by the identity of the companion plant species in crop mixtures. In this greenhouse pot study, common beans were cultivated with another legume (chickpea) and a cereal (Sorghum). We compared BNF, crop biomass and nutrient assimilation of all plant species grown in monocultures with plants grown in crop mixtures. Results: We found beans to exhibit low levels of BNF, and to potentially compete with other species for available soil N in crop mixtures. The BNF of chickpeas however, was enhanced when grown in mixtures. Furthermore, biomass, phosphorous and potassium values of chickpea and Sorghum plants were higher in monocultures, compared to in mixtures with beans; suggesting competitive efects of beans on these plants. Concentration of calcium, magnesium and zinc in beans was higher when grown with chickpeas than with Sorghum. Conclusions: It is generally assumed that legumes beneft their companion plant species. Our study highlights the contrary and shows that the specifc benefts of cereal-legume mixtures are dependent on the growth rate of the species concerned. We further highlight that the potential of legume-legume mixtures is currently undervalued and may play a strong role in increasing N use efciency of intercrop based systems

    More than a meat- or synthetic nitrogen fertiliser-substitute:a review of legume phytochemicals as drivers of 'One Health' via their influence on the functional diversity of soil- and gut-microbes

    Get PDF
    Legumes are essential to healthy agroecosystems, with a rich phytochemical content that impacts overall human and animal well-being and environmental sustainability. While these phytochemicals can have both positive and negative effects, legumes have traditionally been bred to produce genotypes with lower levels of certain plant phytochemicals, specifically those commonly termed as 'antifeedants' including phenolic compounds, saponins, alkaloids, tannins, and raffinose family oligosaccharides (RFOs). However, when incorporated into a balanced diet, such legume phytochemicals can offer health benefits for both humans and animals. They can positively influence the human gut microbiome by promoting the growth of beneficial bacteria, contributing to gut health, and demonstrating anti-inflammatory and antioxidant properties. Beyond their nutritional value, legume phytochemicals also play a vital role in soil health. The phytochemical containing residues from their shoots and roots usually remain in-field to positively affect soil nutrient status and microbiome diversity, so enhancing soil functions and benefiting performance and yield of following crops. This review explores the role of legume phytochemicals from a 'one health' perspective, examining their on soil- and gut-microbial ecology, bridging the gap between human nutrition and agroecological science.</p

    Integrated policy analysis to identify transformation paths to more-sustainable legume-based food and feed value-chains in Europe

    Get PDF
    The food- and feed-value systems in the European Union are not protein self-sufficient. Despite their potential to improve the well-being of arable cropping systems, sufficient production of high-protein legume grains in Europe has not been achieved due to multiple barriers. The reasons are multiple and span economic, agronomic, research, and extension services, as well as aspects of culture and traditional dietary habits. Given the well-documented advantages of legume-supported production systems and diets, that include ecosystem and health provisions, acknowledging and promoting legumes as cornerstone species for more sustainable agri-food systems is a necessary and logical step. This paper provides an integrated analysis of case studies and current policies that shape the production and consumption of legumes in Europe. This study identified three key pathways, which can be integrated into sustainable farming systems to support current and future food security challenges via the use of legumes and legume-based products. At each pathway, we identified several enablers that support the sustainability transformation of legume production and consumption in Europe.N/

    More than a meat- or synthetic nitrogen fertiliser-substitute: a review of legume phytochemicals as drivers of ‘One Health’ via their influence on the functional diversity of soil- and gut-microbes

    Get PDF
    Legumes are essential to healthy agroecosystems, with a rich phytochemical content that impacts overall human and animal well-being and environmental sustainability. While these phytochemicals can have both positive and negative effects, legumes have traditionally been bred to produce genotypes with lower levels of certain plant phytochemicals, specifically those commonly termed as ‘antifeedants’ including phenolic compounds, saponins, alkaloids, tannins, and raffinose family oligosaccharides (RFOs). However, when incorporated into a balanced diet, such legume phytochemicals can offer health benefits for both humans and animals. They can positively influence the human gut microbiome by promoting the growth of beneficial bacteria, contributing to gut health, and demonstrating anti-inflammatory and antioxidant properties. Beyond their nutritional value, legume phytochemicals also play a vital role in soil health. The phytochemical containing residues from their shoots and roots usually remain in-field to positively affect soil nutrient status and microbiome diversity, so enhancing soil functions and benefiting performance and yield of following crops. This review explores the role of legume phytochemicals from a ‘one health’ perspective, examining their on soil- and gut-microbial ecology, bridging the gap between human nutrition and agroecological science

    Environmental impacts of Scottish faba bean-based beer in an integrated beer and animal feed value chain

    Get PDF
    Beer is one of themost popular drinks globally and productionmethods clearly need to becomemore sustainable. The brewing of legume grains could contribute to improved sustainability through encouraging the diversification of cropped systems and by providing more nutritious local co-products as animal feed. The aim of this studywas to assess the potential environmental effect of partially substituting malted barley with grain legumes as an option to mitigate the environmental impact of beer. A Life Cycle Assessment (LCA) was performed to compare a novel Scottish beer produced with malted barley and UK-grown faba beans with a traditional malted barley beer. Weconsidered beer production as part of amulti-functional beer and animal feed value chain, where coproducts are used as a high-protein UK-grown animal feed. The environmental performances of the different beers were highly dependent on the system boundaries adopted. The simple attributional LCA indicated that a barley-bean beer could offer environmental savingswhen alcohol yields are optimised, with environmental burdens that were significantly smaller than those of the barley beer across 6 categories. When boundarieswere expanded to include both feed substitution and agricultural rotations, the barley-bean beer with current alcohol yields outperformed the barley beer across 8 impact categories, with a 15 %-17 % smaller climate change burden, mainly due to higher feed substitution achieved froma larger volumeof brewing co-productswith higher protein concentrations. Therefore, brewers should consider the use of legumes in their brewing recipes to lower their environmental footprint, increasing the availability of more nutritious beer co-products as a local source of animal feed, and diversifying cropping systems while adding novelty to their product range. Different boundaries settings and scenarios should be assessed in a beer LCA, and entire cropping rotations should be integrated to capture a more accurate picture of the agricultural stage.(c) 2022 Published by Elsevier Ltd on behalf of Institution of Chemical Engineers

    More than a meat- or synthetic nitrogen fertiliser-substitute:a review of legume phytochemicals as drivers of 'One Health' via their influence on the functional diversity of soil- and gut-microbes

    Get PDF
    Legumes are essential to healthy agroecosystems, with a rich phytochemical content that impacts overall human and animal well-being and environmental sustainability. While these phytochemicals can have both positive and negative effects, legumes have traditionally been bred to produce genotypes with lower levels of certain plant phytochemicals, specifically those commonly termed as 'antifeedants' including phenolic compounds, saponins, alkaloids, tannins, and raffinose family oligosaccharides (RFOs). However, when incorporated into a balanced diet, such legume phytochemicals can offer health benefits for both humans and animals. They can positively influence the human gut microbiome by promoting the growth of beneficial bacteria, contributing to gut health, and demonstrating anti-inflammatory and antioxidant properties. Beyond their nutritional value, legume phytochemicals also play a vital role in soil health. The phytochemical containing residues from their shoots and roots usually remain in-field to positively affect soil nutrient status and microbiome diversity, so enhancing soil functions and benefiting performance and yield of following crops. This review explores the role of legume phytochemicals from a 'one health' perspective, examining their on soil- and gut-microbial ecology, bridging the gap between human nutrition and agroecological science.</p

    Optimised processing of faba bean (<i>Vicia faba L.</i>) kernels as a brewing adjunct

    Get PDF
    Pulse (Fabaceae) grains, such as peas and beans, are derived from crops that are usually cultivated in the absence of mineral nitrogen fertiliser as these crops can obtain their nitrogen requirement naturally from the air via biological nitrogen fixation. Therefore, pulses present a significantly lower greenhouse gas (GHG) footprint than crops demanding nitrogen fertiliser, whilst also offering significant quantities of starch for the brewing and distilling industries. Mitigation of agriculture derived GHG emissions through utilisation of pulses can have a positive environmental impact. To this end, the potential of exploiting dry, dehulled faba bean (Vicia faba L.) kernel flour as an adjunct for beer production was evaluated. The impact of different temperature regimes and commercial enzymes were assessed for their effect on wort: viscosity; run-off rate; primary amino nitrogen content and, fermentability. Faba beans demonstrated insufficient endogenous enzyme capacity for starch conversion and generated a viscous wort. However, using a stepped temperature mashing regime and exogenous enzyme additions, the faba bean wort was comparable in processability and fermentability to that of 100% malted barley wort. The faba based beer and co-product qualities demonstrate the environmental, nutritional and commercial potential of pulses in brewing.</p
    • …
    corecore