15 research outputs found

    Improvements to Wire Bundle Thermal Modeling for Ampacity Determination

    Get PDF
    Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented

    Simplified Aid for Extra-Vehicular Activity Rescue (SAFER) Battery Assessment

    Get PDF
    In 2013, the Boeing Company model 787-8 Dreamliner commercial aircraft experienced three catastrophic lithium (Li) battery failures. The cause of each failure resulted in a single-cell thermal runaway (TR) condition, which propagated to adjacent battery cells. Two of the failures involved rechargeable lithium-ion (Li-Ion) batteries, and the third event involved a nonrechargeable lithium-manganese dioxide (Li-MnO2) battery. In response to these Li battery failures, the NASA Engineering and Safety Center (NESC) approved a technical assessment of the International Space Station Simplified Aid for Extra-Vehicular Activity Rescue (SAFER) Li non-rechargeable battery. This assessment was conducted to evaluate the SAFER Li nonrechargeable battery safety design features against Boeing 787 Dreamliner Li battery failure lessons learned. Specifically, this investigation focused on assessing the severity of a SAFER battery TR hazard conditions

    High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study

    Get PDF
    This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving

    International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Get PDF
    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the space environment forecast input to the ISS charging model indicates floating potentials (FP) within specified limits. These recommendations were based on the persistence of conditions in the space environment due to the current low solar cycle and belief in the accuracy and completeness of the ISS charging model. Subsequently, a Noncompliance Report (NCR), ISS-NCR-232G, Lack of Two-fault Tolerance to EVA Crew Shock in the Low Earth Orbit Plasma Environment, was signed in September 2013 specifying new guidelines for the use of shock hazard controls based on a forecast of the space environment from ISS plasma measurements taken prior to the EVA [ISS-EVA-312-AC, 2012]. This NESC assessment re-evaluates EVA charging hazards through a process that is based on over 14 years of ISS operations, charging measurements, laboratory tests, EMU studies and modifications, and safety reports. The assessment seeks an objective review of the plasma charging hazards associated with EVA operations to determine if any of the present hazard controls can safely change the PCU utilization plan to allow more flexibility in ISS operations during EVA preparation and execution

    International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Get PDF
    The NASA Engineering and Safety Center (NESC) received a request to support the Assessment of the International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Update. The NESC conducted an earlier assessment of the use of the PCU in 2009. This document contains the outcome of the assessment update

    Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs

    Get PDF
    Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments

    A Unified Approach to Dynamic Modeling of High Switching Frequency PWM Converters

    Get PDF
    This dissertation will present the development of a unified approach for dynamic modeling of the PWM and soft-switching power converters. Dynamic modeling of non-linear power converters is very important for the design and stability of their closed loop control. While the use of equivalent circuits is often preferred due to simulation efficiency issues, no unified and widely applicable method for the formulation of these equivalents exists. A review of conventional modeling technique via the method of state-space averaging will be carried out. Complete development of the averaged, equivalent circuit models for the nonlinear power switch/diode combination in modem power converters via the Vorperian method will also be given. After highlighting the limitation\u27s of the Vorperian approach, a more widely applicable approach will be developed. This approach will capitalize on the notion that the derivative of the average of a time varying parameter is equal to the average of the derivative of that parameter. First, the development will show the formulation of the dc modeling equations, then show how these modeling equations are implemented using PSPICE\u27s Analog Behavioral Modeling capability. Next, the validation of the models produced will be presented via comparison to actual circuit simulation and experimental results. The unified approach presented has several advantages over conventional techniques. The unified approach is applicable to virtually any type of converter and is not restricted by topological issues. It is easily derived by a methodical approach, it simulates accurately and quickly, and it produces models that can work equally well in CCM and DCM. Model results agree well with other averaged models and the actual circuit. In addition, the approach will be expanded to include non-ideal effects such as conduction loss for both CCM and DCM operational modes. It will also be applied to the more complicated class of soft-switching topologies. The purpose of the research is to develop a methodology that makes more effective use of computer simulation tools during power converter prototype development. Although, predictions about converter operation are often very good when using this unified method, it should not be considered a substitute for actual circuit simulation or bench top prototyping which often reveal subtle issues not evident from average modeling. The following work will show that the types of computer-based analysis used in the design approach are the necessary and prudent first steps in the design process

    Improvements to Wire Bundle Thermal Modeling for Ampacity Determination

    No full text
    Abstract -Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with various external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. An earlier tool allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained by low bundle jacket surface infrared emittance calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and ambient air pressure on wire-to-wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented

    Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    No full text
    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required
    corecore