42 research outputs found
Agriculture is a major source of NO x pollution in California.
Nitrogen oxides (NO x = NO + NO2) are a primary component of air pollution-a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NO x pollution, several of the United States' worst-air quality districts remain in rural regions of the state. Site-based findings suggest that NO x emissions from California's agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NO x pollution in California, with especially high soil NO x emissions from the state's Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NO x emissions and (ii) top-down airborne observations of atmospheric NO x concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NO x source from cropland soil, which is estimated to increase the NO x budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NO x emissions from the soil. Our results highlight opportunities to limit NO x emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California
Recommended from our members
Extrapolation of point measurements and fertilizer-only emission factors cannot capture statewide soil NO x emissions.
Maaz et al. argue that inconsistencies across scales of observation undermine our working hypothesis that soil NO x emissions have been substantially overlooked in California; however, the core issues they raise are already discussed in our manuscript. We agree that point measurements cannot be reliably used to estimate statewide soil NO x emissions-the principal motivation behind our new modeling/airplane approach. Maaz et al.'s presentation of fertilizer-based emission factors (a nonmechanistic scaling of point measures to regions based solely on estimated nitrogen fertilizer application rates) includes no data from California or other semiarid sites, and does not explicitly account for widely known controls of climate, soil, and moisture on soil NO x fluxes. In contrast, our model includes all of these factors. Finally, the fertilizer sales data that Maaz et al. highlight are known to suffer from serious errors and do not offer a logically more robust pathway for spatial analysis of NO x emissions from soil
Short-term methane emissions from two dairy farms in California estimated by different measurement techniques and US Environmental Protection Agency inventory methodology: A case study
Atmospheric top-down measurements have attributed up to twice the methane (CH4) emissions of bottom-up (BU) inventories to dairy production. We explored this discrepancy by estimating CH4 emissions of two dairy facilities in California with U.S. Environmental Protection Agency (USEPA) methodology, which is used for BU inventories, and three independent measurement techniques: 1) open-path measurements with inverse dispersion modeling (hereafter âopen-pathâ); 2) vehicle measurements with tracer flux ratio method; and 3) aircraft measurements with closed-path method. All three techniques estimated whole farm CH4 emissions during one week in the summer of 2016. In addition, open-path also estimated whole farm CH4 emissions during two months in the winter of 2017. The objectives of the present study were: 1) to compare the different techniques to measure whole farm CH4 emissions from dairies, 2) to estimate CH4 emissions from animal housing and liquid manure storage, and compare them to USEPA inventory estimates, and 3) to compare CH4 emissions between the two dairies. Whole farm CH4 estimates were similar among measurement techniques. No seasonality was detected for CH4 emissions from animal housing, but CH4 emissions from liquid manure storage were three to six times greater during the summer than during the winter. Open-path estimates for liquid manure storage emissions were similar to monthly USEPA estimates during the summer but not during the winter, and neither open-path estimates from summer nor winter were similar to the annual USEPA estimate. Thus, CH4 emissions need to be measured throughout the year to evaluate annual inventories. Methane yields from housing and liquid manure storage were used to compare emissions between the farms. While CH4 yields from animal housing were similar (on average 20.9 g CH4/kg dry matter intake), CH4 yields from liquid manure storage at one dairy were 1.7 and 3.5 times greater than at the other dairy during summer (234 vs. 137 g CH4/kg volatile solids [VS]) and winter (78 vs. 22 g CH4/kg VS), respectively. This greater CH4 yield was attributed to the greater proportion of manure stored in liquid form, which suggests that the promotion of manure management practices that reduce the amount of manure solids stored in liquid form, such as manure separators, could significantly reduce CH4 emissions from dairies. These results demonstrate that multiple techniques for monitoring emissions on these farms were comparable
Recommended from our members
The California baseline ozone transport study (CABOTS)
Ozone is one of the six criteria pollutants identified by the U.S. Clean Air Act Amendment of 1970 as particularly harmful to human health. Concentrations have decreased markedly across the United States over the past 50 years in response to regulatory efforts, but continuing research on its deleterious effects have spurred further reductions in the legal threshold. The South Coast and San Joaquin Valley Air Basins of California remain the only two extreme ozone nonattainment areas in the United States. Further reductions of ozone in the West are complicated by significant background concentrations whose relative importance increases as domestic anthropogenic contributions decline and the national standards continue to be lowered. These background concentrations derive largely from uncontrollable sources including stratospheric intrusions, wildfires, and intercontinental transport. Taken together the exogenous sources complicate regulatory strategies and necessitate a much more precise understanding of the timing and magnitude of their contributions to regional air pollution. The California Baseline Ozone Transport Study was a field campaign coordinated across Northern and Central California during spring and summer 2016 aimed at observing daily variations in the ozone columns crossing the North American coastline, as well as the modification of the ozone layering downwind across the mountainous topography of California to better understand the impacts of background ozone on surface air quality in complex terrain
Pacific Atmospheric Sulfur Experiment (PASE): dynamics and chemistry of the south Pacific tropical trade wind regime
The Pacific Atmospheric Sulfur Experiment (PASE) was a comprehensive airborne study of the chemistry and dynamics of the tropical trade wind regime (TWR) east of the island of Kiritibati (Christmas Island, 157Âș, 20âČ W, 2Âș 52âČ N). Christmas Island is located due south of Hawaii. Geographically it is in the northern hemisphere yet it is 6â12Âș south of the intertropical convergence zone (ITCZ) which places it in the southern hemisphere meteorologically. Christmas Island trade winds in August and September are from east south east at 3â15 msâ1. Clouds, if present, are fair weather cumulus located in the middle layer of the TWR which is frequently labeled the buffer layer (BuL). PASE provided clear support for the idea that small particles (80 nm) were subsiding into the tropical trade wind regime (TWR) where sulfur chemistry transformed them to larger particles. Sulfur chemistry promoted the growth of some of these particles until they were large enough to activate to cloud drops. This process, promoted by sulfur chemistry, can produce a cooling effect due to the increase in cloud droplet density and changes in cloud droplet size. These increases in particle size observed in PASE promote additional cooling due to direct scattering from the aerosol. These potential impacts on the radiation balance in the TWR are enhanced by the high solar irradiance and ocean albedo of the TWR. Finally because of the large area involved there is a large factional impact on earthâs radiation budget. The TWR region near Christmas Island appears to be similar to the TWR that persists in August and September, from southwest of the Galapagos to at least Christmas Island. Transport in the TWR between the Galapagos and Christmas involves very little precipitation which could have removed the aerosol thus explaining at least in part the high concentrations of CCN (â300 at 0.5% supersaturation) observed in PASE. As expected the chemistry of sulfur in the trade winds was found to be initiated by the emission of DMS into the convective boundary layer (BL, the lowest of three layers). However, the efficiency with which this DMS is converted to SO2 has been brought into further question by this study. This unusual result has come about as result of our using two totally different approaches for addressing this long standing question. In the first approach, based on accepted kinetic rate constants and detailed steps for the oxidation of DMS reflecting detailed laboratory studies, a DMS to SO2 conversion efficiency of 60â73% was determined. This range of values lies well within the uncertainties of previous studies. However, using a completely different approach, involving a budget analysis, a conversion value of 100% was estimated. The latter value, to be consistent with all other sulfur studies, requires the existence of a completely independent sulfur source which would emit into the atmosphere at a source strength approximately half that measured for DMS under tropical Pacific conditions. At this time, however, there is no credible scientific observation that identifies what this source might be. Thus, the current study has opened for future scientific investigation the major question: is there yet another major tropical marine source of sulfur? Of equal importance, then, is the related question, is our global sulfur budget significantly in error due to the existence of an unknown marine source of sulfur? Pivotal to both questions may be gaining greater insight about the intermediate DMS oxidation species, DMSO, for which rather unusual measurements have been reported in previous marine sulfur studies. The 3 pptv bromine deficit observed in PASE must be lost over the lifetime of the aerosol which is a few days. This observation suggests that the primary BrO production rate is very small. However, considering the uncertainties in these observations and the possible importance of secondary production of bromine radicals through aerosol surface reactions, to completely rule out the importance of bromine chemistry under tropical conditions at this time cannot be justified. This point has been brought into focus from prior work that even at levels of 1 pptv, the effect of BrO oxidation on DMS can still be quite significant. Thus, as in the case of DMS conversion to SO2, future studies will be needed. In the latter case there will need to be a specific focus on halogen chemistry. Such studies clearly must involve specific measurements of radical species such as BrO
Sources of upper tropospheric HO\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3e over the South Pacific Convergence Zone: A case study
A zeroâdimensional (0âD) model has been applied to study the sources of hydrogen oxide radicals (HOx = HO2 + OH) in the tropical upper troposphere during the Pacific Exploratory Mission in the tropics (PEMâTropics B) aircraft mission over the South Pacific in MarchâApril 1999. Observations made across the Southern Pacific Convergence Zone (SPCZ) and the southern branch of the Intertropical Convergence Zone (ITCZ) provided the opportunity to contrast the relative contributions of different sources of HOx, in a nitrogen oxide radical (NOx)âlimited regime, in relatively pristine tropical air. The primary sources of HOx vary significantly along the flight track, in correlation with the supply of water vapor. The latitudinal variation of HOx sources is found to be controlled also by the levels of NOx and primary HOx production rates P(HOx). Budget calculations in the 8â to 12âkm altitude range show that the reaction O(1D) + H2O is a major HOx source in the cloud region traversed by the aircraft, including SPCZ and the southern branch of the ITCZ. Production from acetone becomes significant in drier region south of 20°S and can become dominant where water vapor mixing ratios lie under 200 ppmv. Over the SPCZ region, in the cloud outflow, CH3 OOH transported by convection accounts for 22% to 64% of the total primary source. Oxidation of methane amplifies the primary HOx source by 1â1.8 in the dry regions
On the relative role of convection, chemistry, and transport over the South Pacific Convergence Zone during PEM-Tropics B: A case study
A mesoscale 3D model (MesoâNH) is used to assess the relative importance of convection (transport and scavenging), chemistry, and advection in the vertical redistribution of HOx and their precursors in the upper tropical troposphere. The study is focused on marine deep convection over the South Pacific Convergence Zone (SPCZ) during the PEMâTropics B Flight 10 aircraft mission. The model reproduces well the HOx mixing ratios. Vertical variations and the contrast between north and south of the SPCZ for O3 are captured. Convection uplifted O3âpoor air at higher altitude, creating a minimum in the 9â12 km region, in both modeled and observed profiles. The model captured 60% of the observed HCHO variance but fails to reproduce a peak of HCHO mixing ratio at 300 hPa sampled during the northern spirals. Simulated HCHO mixing ratios underestimate observations in the marine boundary layer. In the model, convection is not an efficient process to increase upper tropospheric HCHO, and HCHO is unlikely to serve as a primary source of HOx. Convection plays an important role in the vertical distribution of CH3OOH with efficient vertical transport from the boundary layer to the 10â15 km region where it can act as a primary source of HOx. The SPCZ region acts as a barrier to mixing of tropical and subtropical air at the surface and at high altitudes (above 250 hPa). The 400â270 hPa region over the convergence zone was more permeable, allowing subtropical air masses from the Southern Hemisphere to mix with tropical air from NE of the SPCZ and to be entrained in the SPCZârelated convection. In this altitude range, exchange of subtropical and tropical air also occurs via airflow, bypassing the convective region SW and proceeding toward the north of the SPCZ
The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence
Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.publishedVersio