44 research outputs found

    Technical manual: a survey of scintillating medium for high-energy particle detection

    Get PDF
    There are various particle detection methods used nowadays and the most common is using scintillators. Among scintillating materials, solid plastic and water-based liquid scintillators (WbLS) are the latest development. In particular, WbLS allows researchers to apply different particle detection methods for increased experiment efficiency. This survey attempts to make an overview on detection methods and detectors in high-energy physics using scintillators. It is meant as a summary for those new to scintillator detectors and looking for general material on the topic.Comment: UPDATED: This TM is a short summary meant as reference for those new to scintillators. This is an addition to other scintillator-related works published, and it is not meant to be published separately in a peer-reviewed journa

    Liquid scintillator composition optimization for use in ultra-high energy cosmic ray detector systems

    Get PDF
    The Horizon-T (HT) detector system and the currently under R&D HT-KZ detector system are designed for the detection of Extensive Air Showers (EAS) with energies above _1016 eV (_1017 eV for HT-KZ). The main challenges in both detector systems are the fast time resolutions needed for studying the temporary structure of EAS, and the extremely wide dynamic range needed to study the spatial distribution of charged particles in EAS disks. In order to detect the low-density of charged particles far from the EAS axis, a large-area detector is needed. Liquid scintillator with low cost would be a possible solution for such a detector, including the recently developed safe and low-cost water-based liquid scintillators. Liquid organic scintillators give a fast and high light yield (LY) for charged particle detection. It is similar to plastic scintillator in properties but is cost effective for large volumes. With liquid scintillator, one can create detection volumes that are symmetric and yet retain high LY detection. Different wavelength shifters affect the scintillation light by changing the output spectrum into the best detection region. Results of the latest studies of the components optimization in the liquid scintillator formulae are presente

    An effective spin model on the honeycomb lattice for the description of magnetic properties in two-dimensional Fe3_3GeTe2_2

    Full text link
    Fe3_3GeTe2_2 attracts significant attention due to technological perspectives of realizing room temperature ferromagnetism in two-dimensional materials. Here we show that due to structural peculiarities of the Fe3_3GeTe2_2 monolayer, short distance between the neighboring iron atoms induces a strong exchange coupling. This strong coupling allows us to consider them as an effective cluster with a magnetic moment \sim5 μB\mu_B, giving rise to a simplified spin model on a bipartite honeycomb lattice with the reduced number of long-range interactions. The simplified model perfectly reproduces the results of the conventional spin model, but allows for a more tractable description of the magnetic properties of Fe3_3GeTe2_2, which is important, e.g., for large-scale simulations. Also, we discuss the role of biaxial strain in the stabilization of ferromagnetic ordering in Fe3_3GeTe2_2.Comment: 7 pages, 7 figure

    Improving energy efficiency of a robotic system based on multiple analytical solutions for inverse kinematics

    Full text link
    The paper presents the results of a study devoted to the problem of improving the energy efficiency of mechanical motion of anthropomorphic robotic systems. Achieving higher energy efficiency is largely due to the implementation of improvements directly in the algorithms that ensure the movement of a robotic system. For this purpose, several existing analytical methods for solving the inverse kinematics problem for robotic walking platforms were analyzed. According to the survey, key areas where modification can improve the energy efficiency of mechanical motion in various RS are identified. The paper discusses the algorithm developed to optimize the solutions of the inverse kinematics problem in terms of energy consumption

    Field evolution of the spin-liquid candidate YbMgGaO4

    Get PDF
    We report magnetization, heat capacity, thermal expansion, and magnetostriction measurements down to mK temperatures on the triangular antiferromagnet YbMgGaO4_4. Our data exclude the formation of the distinct 13\frac13-plateau phase observed in other triangular antiferromagnets, but reveal plateau-like features in second derivatives of the free energy, magnetic susceptibility and specific heat, at μ0H\mu_0H = 1.0 - 2.5 T for HcH\parallel{}c and 2 - 5 T for HcH\perp{}c. Using Monte-Carlo simulations of a realistic spin Hamiltonian, we ascribe these features to non-monotonic changes in the magnetization and the 12\frac12-plateau that is smeared out by the random distribution of exchange couplings in YbMgGaO4_4

    The ATLAS EventIndex: a BigData catalogue for all ATLAS experiment events

    Full text link
    The ATLAS EventIndex system comprises the catalogue of all events collected, processed or generated by the ATLAS experiment at the CERN LHC accelerator, and all associated software tools to collect, store and query this information. ATLAS records several billion particle interactions every year of operation, processes them for analysis and generates even larger simulated data samples; a global catalogue is needed to keep track of the location of each event record and be able to search and retrieve specific events for in-depth investigations. Each EventIndex record includes summary information on the event itself and the pointers to the files containing the full event. Most components of the EventIndex system are implemented using BigData open-source tools. This paper describes the architectural choices and their evolution in time, as well as the past, current and foreseen future implementations of all EventIndex components.Comment: 21 page

    On estimates of constants for maximal functions

    No full text
    In this work we will study Hardy-Littlewood maximal function and maximal operator, basing on both classical and most up to date works. In the first chapter we will give definitions for different types of those objects and consider some of their most important properties. The second chapter is entirely devoted to an overview of the fundamental properties of Hardy-Littlewood maximal function, which are strong (p, p) and weak (1, 1) inequalities. Here we list the most actual results on this inequalities in correspondence to the way the maximal func-tion is defined. The third chapter presents the theorem on asymptotic behavior of the lower bound of the constant in the weak-type (1, 1) inequality for the maximal function associated with cubes of Rd, then the dimension d tends to infinity. In the last chapter a method forcomputing constant c, appearing in the main theorem of chapter 3, is given.QC 20140527</p
    corecore