89 research outputs found

    A low-cost desktop software defined radio design environment using MATLAB, simulink, and the RTL-SDR

    Get PDF
    In the last 5 years, the availability of powerful DSP and Communications design software, and the emergence of relatively affordable devices that receive and digitize RF signals, has brought Software Defined Radio (SDR) to the desktops of many communications engineers. However, the more recent availability of very low cost SDR devices such as the RTL-SDR, costing less than $20, brings SDR to the home desktop of undergraduate and graduate students, as well as both professional engineers and the maker communities. Since the release of the various open source drivers for the RTL-SDR, many in the digital communications community have used this device to scan the RF spectrum and digitise I/Q signals that are being transmitted in the range 25MHz to 1.75GHz. This wide bandwidth enables the sampling of frequency bands containing signals such as FM radio, ISM signals, GSM, 3G and LTE mobile radio, GPS and so on. In this paper we will describe the opportunity and operation of the RTL-SDR, and the development of a hands-on, open-course for SDR. These educational materials can be integrated into core curriculum undergraduate and graduate courses, and will greatly enhance the teaching of DSP and communications theory, principles and applications. The lab and teaching materials have recently been used in Senior (4th year Undergraduate) courses and are available as open course materials for all to access, use and evolve

    The Schistosoma mansoni tegumental-allergen-like (TAL) protein family: influence of developmental expression on human IgE responses

    Get PDF
    BACKGROUND: A human IgE response to Sm22.6 (a dominant IgE target in Schistosoma mansoni) is associated with the development of partial immunity. Located inside the tegument, the molecule belongs to a family of proteins from parasitic platyhelminths, the Tegument-Allergen-Like proteins (TALs). In addition to containing dynein-light-chain domains, these TALs also contain EF-hand domains similar to those found in numerous EF-hand allergens. METHODOLOGY/PRINCIPAL FINDINGS: S. mansoni genome searches revealed 13 members (SmTAL1-13) within the species. Recent microarray data demonstrated they have a wide range of life-cycle transcriptional profiles. We expressed SmTAL1 (Sm22.6), SmTAL2, 3, 4, 5 and 13 as recombinant proteins and measured IgE and IgG4 in 200 infected males (7–60 years) from a schistosomiasis endemic region in Uganda. For SmTAL1 and 3 (transcribed in schistosomula through adult-worms and adult-worms, respectively) and SmTAL5 (transcribed in cercariae through adult-worms), detectable IgE responses were rare in 7–9 year olds, but increased with age. At all ages, IgE to SmTAL2 (expressed constitutively), was rare while anti-SmTAL2 IgG4 was common. Levels of IgE and IgG4 to SmTAL4 and 13 (transcribed predominantly in the cercariae/skin stage) were all low. CONCLUSIONS: We have not measured SmTAL protein abundance or exposure in live parasites, but the antibody data suggests to us that, in endemic areas, there is priming and boosting of IgE to adult-worm SmTALs by occasional death of long-lived worms, desensitization to egg SmTALs through continuous exposure to dying eggs and low immunogenicity of larval SmTALs due to immunosuppression in the skin by the parasite. Of these, it is the gradual increase in IgE to the worm antigens that parallels age-dependent immunity seen in endemic areas

    Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1) is an immunogenic antigen found in EVs released from pre-acetabular glands of invading cercariae.

    Get PDF
    Funder: IBERS, Aberystwyth University PhD studentshipFunder: Higher Education Funding Council for Wales (HEFCW) - Global Challenges Research FundExtracellular Vesicles (EVs) are an integral component of cellular/organismal communication and have been found in the excreted/secreted (ES) products of both protozoan and metazoan parasites. Within the blood fluke schistosomes, EVs have been isolated from egg, schistosomula, and adult lifecycle stages. However, the role(s) that EVs have in shaping aspects of parasite biology and/or manipulating host interactions is poorly defined. Herein, we characterise the most abundant EV-enriched protein in Schistosoma mansoni tissue-migrating schistosomula (Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1)). Comparative sequence analysis demonstrates that lev1 orthologs are found in all published Schistosoma genomes, yet homologs are not found outside of the Schistosomatidae. Lifecycle expression analyses collectively reveal that smlev1 transcription peaks in cercariae, is male biased in adults, and is processed by alternative splicing in intra-mammalian lifecycle stages. Immunohistochemistry of cercariae using a polyclonal anti-recombinant SmLEV1 antiserum localises this protein to the pre-acetabular gland, with some disperse localisation to the surface of the parasite. S. mansoni-infected Ugandan fishermen exhibit a strong IgG1 response against SmLEV1 (dropping significantly after praziquantel treatment), with 11% of the cohort exhibiting an IgE response and minimal levels of detectable antigen-specific IgG4. Furthermore, mice vaccinated with rSmLEV1 show a slightly reduced parasite burden upon challenge infection and significantly reduced granuloma volumes, compared with control animals. Collectively, these results describe SmLEV1 as a Schistosomatidae-specific, EV-enriched immunogen. Further investigations are now necessary to uncover the full extent of SmLEV1's role in shaping schistosome EV function and definitive host relationships

    Drug-Induced Exposure of Schistosoma mansoni Antigens SmCD59a and SmKK7

    Get PDF
    BACKGROUND: Schistosomiasis is a serious health problem especially in developing countries and affects more than 243 million people. Only few anthelmintic drugs are available up to now. A major obstacle for drug treatment is the different developmental stages and the varying host compartments during worm development. Anthelmintic drugs have been tested mainly on adult schistosomes or freshly transformed cercariae. Knowledge concerning the larval stages is lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used in vitro-grown schistosomula (aged between 2 to 14 days) to investigate drug effects of the three anthelmintics praziquantel, artemether, and oxamniquine. Further, we analyzed the antibody accessibility of two exemplary schistosome antigens SmCD59a and SmKK7, before and after drug treatment. Our results demonstrated that praziquantel applied at a concentration of 1 μM inhibited development of all life stages. Application of 10 μM praziquantel led to dramatic morphological changes of all schistosomula. Artemether at 1 and 10 μM had differential effects depending on whether it was applied to 2-day as compared to 7- and 14-day schistosomula. While 2-day schistosomula were not killed but inhibited from further development, severe morphological damage was seen in 7- and 14-day schistosomula. Oxamniquine (1 and 10 μM) led to severe morphological impairment in all life stages. Analyzing the accessibility of the antigens SmCD59a and SmKK7 before drug treatment showed no antibody binding on living intact schistosomula. However, when schistosomula were treated with anthelmintics, both antigens became exposed on the larvae. Oxamniquine turned out to be most effective in promoting antibody binding to all schistosomula stages. CONCLUSION: This study has revealed marked differences in anthelmintic drug effects against larvae. Drug treatment increases surface antigen presentation and renders larvae accessible to antibody attack

    Schistosoma mansoni α-N-acetylgalactosaminidase (SmNAGAL) regulates coordinated parasite movement and egg production

    Get PDF
    α-galactosidase (α-GAL) and α-N-acetylgalactosaminidase (α-NAGAL) are two glycosyl hydrolases responsible for maintaining cellular homeostasis by regulating glycan substrates on proteins and lipids. Mutations in the human genes encoding either enzyme lead to neurological and neuromuscular impairments seen in both Fabry- and Schindler/Kanzaki- diseases. Here, we investigate whether the parasitic blood fluke Schistosoma mansoni, responsible for the neglected tropical disease schistosomiasis, also contains functionally important α-GAL and α-NAGAL proteins. As infection, parasite maturation and host interactions are all governed by carefully-regulated glycosylation processes, inhibiting S. mansoni’s α-GAL and α-NAGAL activities could lead to the development of novel chemotherapeutics. Sequence and phylogenetic analyses of putative α-GAL/α-NAGAL protein types showed Smp_089290 to be the only S. mansoni protein to contain the functional amino acid residues necessary for α-GAL/α-NAGAL substrate cleavage. Both α-GAL and α-NAGAL enzymatic activities were higher in females compared to males (p α-GAL), which was consistent with smp_089290’s female biased expression. Spatial localisation of smp_089290 revealed accumulation in parenchymal cells, neuronal cells, and the vitellaria and mature vitellocytes of the adult schistosome. siRNA-mediated knockdown (>90%) of smp_089290 in adult worms significantly inhibited α-NAGAL activity when compared to control worms (siLuc treated males, p<0.01; siLuc treated females, p<0.05). No significant reductions in α-GAL activities were observed in the same extracts. Despite this, decreases in α-NAGAL activities correlated with a significant inhibition in adult worm motility as well as in egg production. Programmed CRISPR/Cas9 editing of smp_089290 in adult worms confirmed the egg reduction phenotype. Based on these results, Smp_089290 was determined to act predominantly as an α-NAGAL (hereafter termed SmNAGAL) in schistosome parasites where it participates in coordinating movement and oviposition processes. Further characterisation of SmNAGAL and other functionally important glycosyl hydrolases may lead to the development of a novel anthelmintic class of compounds

    In silico characterisation of the complete Ly6 protein family in Fasciola gigantica supported through transcriptomics of the newly-excysted juveniles

    Get PDF
    Fasciola gigantica is one of the aetiological trematodes associated with fascioliasis, which heavily impacts food-production systems and human and animal welfare on a global scale. In the absence of a vaccine, fascioliasis control and treatment is restricted to pasture management, such as clean grazing, and a limited array of chemotherapies, to which signs of resistance are beginning to appear. Research into novel control strategies is therefore urgently required and the advent of ‘omics technologies presents considerable opportunity for novel drug and vaccine target discovery. Here, interrogation of the first available F. gigantica newly excysted juvenile (NEJ) transcriptome revealed several protein families of current interest to parasitic flatworm vaccine research, including orthologues of mammalian complement regulator CD59 of the Ly6 family. Ly6 proteins have previously been identified on the tegument of Schistosoma mansoni and induced protective immunity in vaccination trials. Incorporating the recently available F. gigantica genome, the current work revealed 20 novel Ly6 family members in F. gigantica and, in parallel, significantly extended the F. hepatica complement from 3 to 18 members. Phylogenetic analysis revealed several distinct clades within the family, some of which are unique to Fasciola spp. trematodes. Analysis of available proteomic databases also revealed three of the newly discovered FhLy6s were present in extracellular vesicles, which have previously been prioritised in studying the host-parasite interface. The presentation of this new transcriptomic resource, in addition to the Ly6 family proteins here identified, represents a wealth of opportunity for future vaccine research

    Schistosoma mansoni venom allergen-like proteins:Phylogenetic relationships, stage-specific transcription and tissue localization as predictors of immunological cross-reactivity

    Get PDF
    O artigo encontra-se disponível para download no site do Editor.Submitted by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:23:01Z No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Approved for entry into archive by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:39:31Z (GMT) No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Made available in DSpace on 2019-07-15T18:39:31Z (GMT). No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5) Previous issue date: 2019Welcome Trust (UK) (WT084273/Z/07/Z) to KFH, Fundação Butantan, Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil) to LPF and LLC (2012/23124-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to LCCL and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, and by fellowships from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil) to LPF (2008/57946-5) and HKF (2007/07685-8) and from CNPq to MIK (160861/2017-9). We thank Dra. Eliana Nakano and Ms. Patricia A. Miyasato for supplying the parasite stages and to Alexsander Seixas de Souza for confocal microscopy (FAPESP 00/11624-5) imaging support, all from Instituto Butantan, Brazil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Universidade de São Paulo. Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.Leiden University Medical Centre. Center for Proteomics and Metabolomics. RC Leiden, The Netherlands.Leiden University Medical Centre. Department of Parasitology. RC Leiden, The Netherlands.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Schistosoma mansoni venom allergen-like proteins (SmVALs) are part of a diverse protein superfamily partitioned into two groups (group 1 and group 2). Phylogenetic analyses of group 1 SmVALs revealed that members could be segregated into subclades (A-D); these subclades share similar gene expression patterns across the parasite lifecycle and immunological cross-reactivity. Furthermore, whole-mount in situ hybridization demonstrated that the phylogenetically, transcriptionally and immunologically-related SmVAL4, 10, 18 and 19 (subclade C) were all localized to the pre-acetabular glands of immature cercariae. Our results suggest that SmVAL group 1 phylogenetic relationships, stage-specific transcriptional profiles and tissue localization are predictive of immunological cross-reactivity
    • …
    corecore