79 research outputs found

    Colonization and community development of fish assemblages associated with estuarine artificial reefs

    Get PDF
    A despeito da longa história do desenvolvimento de estruturas artificiais nos estuários de NSW, não existem estudos que apresentem uma avaliação global sobre os efeitos obtidos com o estabelecimento dessas estruturas. No presente trabalho abordamos a efetividade dos recifes artificiais estuarinos como iniciativa para aumento da pesca; descrevemos a diversidade e abundância das espécies a eles associadas; descrevemos os padrões de colonização e o desenvolvimento das comunidades associadas a um recife artificial colocado no Lago Macquaire, extensa lagoa de barreira situada na costa sudeste da Australia. Seis recifes artificiais (formando um único grupo), construídos a partir de unidades artificiais (Reef Balls®), foram lançados em Dezembro de 2005 e amostrados seis vezes a cada estação do ano, durante dois anos, utilizando video subaquático remoto (BRUV). A colonização dentro do grupo de recifes ocorreu de maneira relativamente rápida, sendo que a maioria das espécies identificadas nos dois anos de estudo foi observada durante o primeiro ano de amostragem. Um total de 27 espécies pertencentes a 17 famílias foram identificadas. As espécies chave do processo de colonização foram Pelates sexlineatus (Teraponidae), Acanthopagrus australis (Sparidae), Pagrus auratus (Sparidae) and Rhabdosargus sarba (Sparidea). A riqueza de espécies mostrou evidência de sazonalidade, enquanto a diversidade aumentou significativamente com o aumento da idade do recife. A composição da assembléia de peixes permaneceu relativamente estável após o primeiro ano de amostragem, com poucos padrões identificáveis relativos à estrutura. Durante o segundo ano tornou-se evidente a formação de grupos por idade, padrão primariamente ocasionado pelo decréscimo na abundância de P. sexlineatus; por sua vez este decréscimo mostrou ser resultado da natureza isolada do recife artificial e dos efeitos interdependentes de abundância e predação.Despite the long history of the development of artificial structures in NSW estuaries there are no studies that provide any comprehensive scientific evaluation of post-deployment goals. We assessed the effectiveness of estuarine artificial reefs as a fisheries enhancement initiative; described the diversity and abundance of species associated with them, and detailed the patterns of colonization and community development associated with an artificial reef deployment in Lake Macquarie, a large coastal barrier lagoon on the southeast coast of Australia. Six artificial reefs (one artificial reef group), constructed from artificial reef units (Reef Balls®), were deployed in December 2005 and sampled six times per season over two years using baited remote underwater video (BRUV). Colonization of the artificial reef group was relatively rapid with the majority of species identified over the two-year study period observed within the first year post-deployment. Overall, 27 species from 17 families were identified. Key colonising species included Pelates sexlineatus (Terapontidae), Acanthopagrus australis (Sparidae), Pagrus auratus (Sparidae) and Rhabdosargus sarba (Sparidae). Species richness showed evidence of potential seasonal fluctuations, being higher in warm water months (Summer/Autumn), and lower in the colder water months (Winter/Spring), while species diversity increased significantly with reef age. Fish assemblage composition remained relatively stable after the first year of sampling, with few discernible patterns in assemblage structure evident after the first year. Distinct separation in reef age groupings was evident during the second year of sampling; a pattern primarily driven by a decrease in abundance of P. sexlineatus, a result of the isolated nature of the artificial reefs and the interrelated effects of density dependence and predation

    Using integrative taxonomy to distinguish cryptic halfbeak species and interpret distribution patterns, fisheries landings, and speciation

    Get PDF
    Context. Species classification disputes can be resolved using integrative taxonomy, which involves the use of both phenotypic and genetic information to determine species boundaries. Aims. Our aim was to clarify species boundaries of two commercially important cryptic species of halfbeak (Hemiramphidae), whose distributions overlap in south-eastern Australia, and assist fisheries management. Methods. We applied an integrative taxonomic approach to clarify species boundaries and assist fisheries management. Key results. Mitochondrial DNA and morphological data exhibited significant differences between the two species. The low level of mitochondrial DNA divergence, coupled with the lack of difference in the nuclear DNA, suggests that these species diverged relatively recently (c. 500 000 years ago) when compared with other species within the Hyporhamphus genus (>2.4 million years ago). Genetic differences between the species were accompanied by differences in modal gill raker counts, mean upper- jaw and preorbital length, and otolith shape. Conclusions. On the basis of these genetic and morphological differences, as well as the lack of morphological intergradation between species along the overlapping boundaries of their geographical distributions, we propose that Hyporhamphus australis and Hyporhamphus melanochir remain valid species. Implications. This study has illustrated the need for an integrative taxonomic approach when assessing species boundaries and has provided a methodological framework for studying other cryptic fish species in a management context

    Distribution of Palinuridae and Scyllaridae phyllosoma larvae within the East Australian Current: a climate change hot spot

    Get PDF
    Many marine species are predicted to shift their ranges poleward due to rising ocean temperatures driven by climate change. For benthic marine species with pelagic larval stages, poleward range shifts are often facilitated through pelagic larval transport via western boundary currents (WBC). By surveying pelagic larval distributions within WBCs, species advected poleward of their known distributions can be identified and monitored. Palinurid and scyllarid lobster larvae (phyllosoma) have long pelagic larval durations, providing high potential for poleward advection. We surveyed spatial distribution of phyllosoma within the western-boundary East Australian Current. Due to difficulties morphologically identifying phyllosoma, we tested the utility of molecular identification using cytochrome c oxidase I (COI). From COI sequences of 56 phyllosoma and one postlarva, 65% of sequences consisted of good-quality mitochondrial DNA. Across water types sampled, scyllarid phyllosoma exhibited relatively homogeneous distribution, whereas palinurid phyllosoma exhibited heterogeneous distribution with greatest abundance inside a warm core eddy on the south coast of eastern Australia. Two tropical and one subtropical palinurid species were detected ~75–1800 km to the south or south-west of their known species distribution. Our results indicate tropical lobster species are reaching temperate regions, providing these species the opportunity to establish in temperate regions if or when environmental conditions become amenable to settlement

    A deep dive into the ecology of Gamay (Botany Bay, Australia): current knowledge and future priorities for this highly modified coastal waterway

    Get PDF
    Context: Gamay is a coastal waterway of immense social, cultural and ecological value. Since European settlement, it has become a hub for industrialisation and human modification. There is growing desire for ecosystem-level management of urban waterways, but such efforts are often challenged by a lack of integrated knowledge. Aim and methods: We systematically reviewed published literature and traditional ecological knowledge (TEK), and consulted scientists to produce a review of Gamay that synthesises published knowledge of Gamay’s aquatic ecosystem to identify knowledge gaps and future research opportunities. Key results: We found 577 published resources on Gamay, of which over 70% focused on ecology. Intertidal rocky shores were the most studied habitat, focusing on invertebrate communities. Few studies considered multiple habitats or taxa. Studies investigating cumulative human impacts, long-term trends and habitat connectivity are lacking, and the broader ecological role of artificial substrate as habitat in Gamay is poorly understood. TEK of Gamay remains a significant knowledge gap. Habitat restoration has shown promising results and could provide opportunities to improve affected habitats in the future. Conclusion and implications: This review highlights the extensive amount of knowledge that exists for Gamay, but also identifies key gaps that need to be filled for effective management

    A function-based typology for Earth’s ecosystems

    Get PDF
    As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of ‘living in harmony with nature’(1,2). Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management(3). Ecosystems vary in their biota(4), service provision(5) and relative exposure to risks(6), yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth’s ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework

    An observation of two oceanic salp swarms in the Tasman Sea: Thetys vagina and Cyclosalpa affinis

    No full text
    Background: Large oceanic salps are rarely encountered. The highest recorded biomasses of the salps Thetys vagina (852 g WW m-3) and Cyclosalpa affinis (1149 g WW m-3) were observed in the Tasman Sea during January 2009. Results: Due to their fast sinking rates the carcasses and faecal pellets of these and other large salps play a significant role in carbon transport to the seafloor. We calculated that faecal pellets from these swarms could have contributed up to 67 % of the mean organic daily carbon flux in the area. This suggests that the flux of carbon from salp swarms are not accurately captured in current estimates. Conclusion: This study contributes information on salp abundance and biomass to a relatively understudied field, improving estimates for biogeochemical cycles

    Onshore-offshore distribution and abundance of tuna larvae (Pisces: Scombridae: Thunnini) in near-reef waters of the Coral Sea

    Get PDF
    The on-offshore distributions of tuna larvae in near-reef waters of the Coral Sea, near Lizard Island (14°30ʹS, 145°27ʹE), Australia, were investigated during four cruises from November 1984 to February 1985 to test the hypothesis that larvae of these oceanic fishes are found in highest abundance near coral reefs. Oblique bongo net tows were made in five on-offshore blocks in the Coral Sea, ranging from 0–18.5 km offshore of the outer reefs of the Great Barrier Reef, as well as inside the Great Barrier Reef Lagoon. The smallest individuals (<3.2 mm SL) of the genus Thunnus could not be identified to species, and are referred to as Thunnus spp. We found species-specific distributional patterns. Thunnus spp. and T. alalunga (albacore) larvae were most abundant (up to 68 larvae/100 m2) in near-reef (0–5.5 km offshore) waters, whereas Katsuwonus pelamis (skipjack tuna) larvae increased in abundance in the offshore direction (up to 228 larvae/100 m2, 11.1–18.5 km offshore). Larvae of T. albacares (yellowfin tuna) and Euthynnus affinis (kawakawa) were relatively rare throughout the study region, and the patterns of their distributions were inconclusive. Few larvae of any tuna species were found in the lagoon. Size-frequency distributions revealed a greater proportion of small larvae inshore compared to offshore for K. pelamis and T. albacares. The absence of significant differences in size-frequency distributions for other species and during the other cruises was most likely due to the low numbers of larvae. Larval distributions probably resulted from a combination of patterns of spawning and vertical distribution, combined with wind-driven onshore advection and downwelling on the seaward side of the outer reefs
    • …
    corecore