43 research outputs found

    Towards chemical validation of Leishmania infantum ribose 5-phosphate isomerase as a drug target

    Get PDF
    Funding from the European Community's Seventh Framework Programme under grant agreements No. 602773 (Project KINDRED) was received for all partners in this work. This work also received funds from FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior through the Research Unit No. 4293 and project POCI-01-0145-FEDER-031013 (PTDC/SAUPAR/31013/2017 to NS); Individual funding from FCT through SFRH/BD/133485/2017 (to MS) and CEECIND/02362/2017 (to JT).Neglected tropical diseases caused by kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) place a significant health and economic burden on developing nations worldwide. Current therapies are largely out-dated, inadequate and facing mounting drug resistance from the causative parasites. Thus, there is an urgent need for drug discovery and development. Target-led drug discovery approaches have focused on the identification of parasite enzymes catalysing essential biochemical processes, which significantly differ from equivalent proteins found in humans, thereby providing potentially exploitable therapeutic windows. One such target is ribose 5-phosphate isomerase B (RpiB), an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, which catalyses the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Although protozoan RpiB has been the focus of numerous targeted studies, compounds capable of selectively inhibiting this parasite enzyme have not been identified. Here, we present the results of a fragment library screening against Leishmania infantum RpiB, performed using thermal shift analysis. Hit fragments were shown to be effective inhibitors of LiRpiB in activity assays, and several were capable of selectively inhibiting parasite growth in vitro. These results support the identification of LiRpiB as a validated therapeutic target. The X-ray crystal structure of apo LiRpiB was also solved, permitting docking studies to assess how hit fragments might interact with LiRpiB to inhibit its activity. Overall, this work will guide structure-based development of LiRpiB inhibitors as anti-leishmanial agents.PostprintPeer reviewe

    Validation of standard operating procedures in a multicenter retrospective study to identify-omics biomarkers for chronic low back pain

    Get PDF
    Chronic low back pain (CLBP) is one of the most common medical conditions, ranking as the greatest contributor to global disability and accounting for huge societal costs based on the Global Burden of Disease 2010 study. Large genetic and -omics studies provide a promising avenue for the screening, development and validation of biomarkers useful for personalized diagnosis and treatment (precision medicine). Multicentre studies are needed for such an effort, and a standardized and homogeneous approach is vital for recruitment of large numbers of participants among different centres (clinical and laboratories) to obtain robust and reproducible results. To date, no validated standard operating procedures (SOPs) for genetic/-omics studies in chronic pain have been developed. In this study, we validated an SOP model that will be used in the multicentre (5 centres) retrospective “PainOmics” study, funded by the European Community in the 7th Framework Programme, which aims to develop new biomarkers for CLBP through three different -omics approaches: genomics, glycomics and activomics. The SOPs describe the specific procedures for (1) blood collection, (2) sample processing and storage, (3) shipping details and (4) cross-check testing and validation before assays that all the centres involved in the study have to follow. Multivariate analysis revealed the absolute specificity and homogeneity of the samples collected by the five centres for all genetics, glycomics and activomics analyses. The SOPs used in our multicenter study have been validated. Hence, they could represent an innovative tool for the correct management and collection of reliable samples in other large-omics-based multicenter studies

    Omics\u27 biomarkers associated with chronic low back pain: Protocol of a retrospective longitudinal study

    Get PDF
    Introduction Chronic low back pain (CLBP) produces considerable direct costs as well as indirect burdens for society, industry and health systems. CLBP is characterised by heterogeneity, inclusion of several pain syndromes, different underlying molecular pathologies and interaction with psychosocial factors that leads to a range of clinical manifestations. There is still much to understand in the underlying pathological processes and the non-psychosocial factors which account for differences in outcomes. Biomarkers that may be objectively used for diagnosis and personalised, targeted and cost-effective treatment are still lacking. Therefore, any data that may be obtained at the-omics\u27 level (glycomics, Activomics and genome-wide association studies-GWAS) may be helpful to use as dynamic biomarkers for elucidating CLBP pathogenesis and may ultimately provide prognostic information too. By means of a retrospective, observational, case-cohort, multicentre study, we aim to investigate new promising biomarkers potentially able to solve some of the issues related to CLBP. Methods and analysis The study follows a two-phase, 1:2 case-control model. A total of 12 000 individuals (4000 cases and 8000 controls) will be enrolled; clinical data will be registered, with particular attention to pain characteristics and outcomes of pain treatments. Blood samples will be collected to perform-omics studies. The primary objective is to recognise genetic variants associated with CLBP; secondary objectives are to study glycomics and Activomics profiles associated with CLBP. Ethics and dissemination The study is part of the PainOMICS project funded by European Community in the Seventh Framework Programme. The study has been approved from competent ethical bodies and copies of approvals were provided to the European Commission before starting the study. Results of the study will be reviewed by the Scientific Board and Ethical Committee of the PainOMICS Consortium. The scientific results will be disseminated through peer-reviewed journals. Trial registration number NCT02037789; Pre-results

    Inhibitors of trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease.

    Get PDF
    Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi

    The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: implications to protein function and drug design.

    Get PDF
    The research leading to these results received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED).The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.Publisher PDFPeer reviewe

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore