63 research outputs found

    KN and KbarN Elastic Scattering in the Quark Potential Model

    Full text link
    The KN and KbarN low-energy elastic scattering is consistently studied in the framework of the QCD-inspired quark potential model. The model is composed of the t-channel one-gluon exchange potential, the s-channel one-gluon exchange potential and the harmonic oscillator confinement potential. By means of the resonating group method, nonlocal effective interaction potentials for the KN and KbarN systems are derived and used to calculate the KN and KbarN elastic scattering phase shifts. By considering the effect of QCD renormalization, the contribution of the color octet of the clusters (qqbar) and (qqq) and the suppression of the spin-orbital coupling, the numerical results are in fairly good agreement with the experimental data.Comment: 20 pages, 8 figure

    Initial State Interactions for K−K^--Proton Radiative Capture

    Full text link
    The effects of the initial state interactions on the K−−pK^--p radiative capture branching ratios are examined and found to be quite sizable. A general coupled-channel formalism for both strong and electromagnetic channels using a particle basis is presented, and applied to all the low energy K−−pK^--p data with the exception of the {\it 1s} atomic level shift. Satisfactory fits are obtained using vertex coupling constants for the electromagnetic channels that are close to their expected SU(3) values.Comment: 16 pages, uses revte

    Kaon pair production close to threshold

    Get PDF
    The total cross section of the reaction pp->ppK+K- has been measured at excess energies Q=10 MeV and 28 MeV with the magnetic spectrometer COSY-11. The new data show a significant enhancement of the total cross section compared to pure phase space expectations or calculations within a one boson exchange model. In addition, we present invariant mass spectra of two particle subsystems. While the K+K- system is rather constant for different invariant masses, there is an enhancement in the pK- system towards lower masses which could at least be partially connected to the influence of the Lambda(1405) resonance.Comment: accepted for publication in Phys. Lett.

    A New Measurement of Kaonic Hydrogen X rays

    Full text link
    The KˉN\bar{K}N system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the KK-series x rays of kaonic hydrogen atoms at the DAΊ\PhiNE electron-positron collider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the 1s1s atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be Ï”1s=−283±36±6(syst)\epsilon_{1s} = -283 \pm 36 \pm 6 {(syst)} eV and Γ1s=541±89(stat)±22(syst)\Gamma_{1s} = 541 \pm 89 {(stat)} \pm 22 {(syst)} eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy KˉN\bar{K}N interaction.Comment: 5 figures, submitted to Physics Letters

    A designer hyper interleukin 11 (H11) is a biologically active cytokine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin 11 (IL-11) is a pleiotropic cytokine with anti-apoptotic, anti-inflammatory and hematopoietic potential. The IL-11 activity is determined by the expression of the IL-11R receptor alpha (IL-11Rα) and the signal transducing subunit ÎČ (gp130) on the cell membrane. A recombinant soluble form of the IL-11Rα (sIL-11Rα) in combination with IL-11 acts as an agonist on cells expressing the gp130 molecule. We constructed a designer cytokine Hyper IL-11 (H11), which is exclusively composed of naturally existing components. It contains the full length sIL-11Rα connected with the mature IL-11 protein using their natural sequences only. Such a construct has two major advantages: (i) its components are as close as possible to the natural forms of both proteins and (ii) it lacks an artificial linker what should avoid induction of antibody production.</p> <p>Results</p> <p>The H11 construct was generated, the protein was produced in a baculovirus expression system and was then purified by using ion exchange chromatography. The H11 protein displayed activity in three independent bioassays, (i) it induced acute phase proteins production in HepG2 cells expressing IL-11, IL-11Rα and gp130, (ii) it stimulated the proliferation of B9 cells (cells expressing IL-11Rα and gp130) and (iii) proliferation of Baf/3-gp130 cells (cells not expressing IL-11 and IL-11Rα but gp130). Moreover, the preliminary data indicated that H11 was functionally distinct from Hyper-IL-6, a molecule which utilizes the same homodimer of signal transducing receptor (gp130).</p> <p>Conclusions</p> <p>The biologically active H11 may be potentially useful for treatment of thrombocytopenia, infertility, multiple sclerosis, cardiovascular diseases or inflammatory disorders.</p

    Computational analysis of expression of human embryonic stem cell-associated signatures in tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach.</p> <p>Results</p> <p>We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.</p> <p>Conclusions</p> <p>The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.</p

    Azimuthal anisotropy in S+Au reactions at 200 A GeV

    Get PDF
    Azimuthal correlations of photons produced at mid-rapidity in 200 A GeV S + Au collisions have been studied using a preshower photon multiplicity detector in the WA93 experiment. The Fourier expansion method has been employed to estimate the event plane via the anisotropy of the event as a function of centrality. The event plane correlation technique has been used to determine the true event anisotropy, beyond the anisotropy which arises due to finite multiplicity. The VENUS event generator with rescattering and proper simulation of the detector response can explain only a portion of the observed anisotropy. The residual anisotropy is found to be of the order of 5% for semi-central collisions. This suggests that directed collective flow of the produced particles is present at SPS energies. (C) 1997 Published by Elsevier Science B.V
    • 

    corecore