46 research outputs found

    Mating Behavior of Rosalia batesi (Coleoptera: Cerambycidae) Is Mediated by Male-Produced Sex Pheromones

    No full text
    Rosalia batesi Harold (Cerambycidae) is a hardwood boring species endemic to Japan. We investigated the adult mating behavior of this species in the field and laboratory. Most males appeared on mating sites before noon, significantly earlier than females did, in field observations. The female approached and contacted the male; the male responded and started the successive mating sequence, comprising mounting, copulation, and appeasement behavior. Before the encounter, the male raised its fore and mid legs and bent the abdominal tip ventrally. Next, a peculiarly structured bifurcate tip was exposed with opening and closing motion, which can be observed in the entire family Cerambycidae and is thought to be associated with the emission of volatile male sex pheromones. Male and female orientation toward conspecifics was examined using T-shaped olfactometers in four combinations (male–male, female–male, female–female, male–female). Males exclusively attracted females, indicating the existence of male-produced sex pheromones. A laboratory bioassay with three temperature regimes revealed the temperature dependence of this calling behavior. The calling behavior occurred only when the air temperature and male body surface temperature, which are associated with light intensity, were within the range of 26–33 °C and 26–28 °C, respectively

    Table S2

    No full text
    List of DEGs Which were Affected by 4-OH-CB107 in Dose-Dependent Manne

    Data from: Effects of 4-Hydroxy-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) on liver transcriptome in rats: implication in the disruption of circadian rhythm and fatty acid metabolism

    No full text
    Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) have been detected in tissues of both wild animals and humans. Several previous studies have suggested adverse effects of OH-PCBs on the endocrine and nervous systems in mammals. However, there have been no studies on transcriptome analysis of the effects of OH-PCBs, and thus, the whole picture and mechanisms underlying the adverse effects induced by OH-PCBs are still poorly understood. We therefore investigated the mRNA expression profile in the liver of adult male Wistar rats treated with 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) to explore the genes responsive to OH-PCBs and to understand the potential effects of the chemical. Next-generation RNA sequencing analysis revealed changes in the expression of genes involved in the circadian rhythm and fatty acid metabolism, such as nuclear receptor subfamily 1, group D, member 1 (Nr1d1), aryl hydrocarbon receptor nuclear translocator-like protein 1 (Arntl), cryptochrome circadian clock 1 (Cry1), and enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (Ehhadh), in 4-OH-CB107-treated rats. In addition, biochemical analysis of the plasma revealed a dose-dependent increase in the leucine aminopeptidase (LAP), indicating the onset of liver damage. These results suggest that OH-PCB exposure may induce liver injury as well as disrupt the circadian rhythm and peroxisome proliferator-activated receptor (PPAR)-related fatty acid metabolism

    Invention of a new Lin soft outer sheath as a continuous flow system for diagnostic flexible hysteroscopy

    No full text
    Objectives: This study aims to evaluate the efficacy of a newly developed Lin soft outer sheath that is used as a continuous flow system for outpatient flexible hysteroscopy. Materials and methods: Diagnostic hysteroscopy was performed in 134 patients who presented to our center with uterine bleeding over the 25-month study period. The flexible hysteroscope was equipped with a Lin soft outer sheath. Results: Hysteroscope insertion failure was observed in six cases of, i.e., an insertion failure rate of 4.5%. Out of the other 128 women, accurate diagnosis of four patients could not be made because of intrauterine blood clots, i.e., a success rate of 92.5%. No complication, except postprocedure bleeding for a few days, was encountered. Conclusion: The new Lin soft outer sheath is effective as a continuous flow system for outpatient flexible hysteroscopy

    Auto-induction mechanism of aryl hydrocarbon receptor 2 (AHR2) gene by TCDD-activated AHR1 and AHR2 in the red seabream (Pagrus major).

    No full text
    The toxic effects of dioxins and related compounds (DRCs) are mediated by the aryl hydrocarbon receptor (AHR). Our previous study identified AHR1 and AHR2 genes from the red seabream (Pagrus major). Moreover, we found that AHR2 mRNA levels were notably elevated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in the early life stage of red seabream embryos, while AHR1 mRNA level was not altered. In this study, to investigate the regulatory mechanism of these AHR transcripts, we cloned and characterized 5'-flanking regions of AHR1 and AHR2 genes. Both of the 5'-flanking regions in these AHR genes contained three potential xenobiotic-responsive elements (XREs). To assess whether the 5'-flanking region is transactivated by rsAHR1 and rsAHR2 proteins, we measured the transactivation potency of the luciferase reporter plasmids containing the 5'-flanking regions by AHR1 and AHR2 proteins that were transiently co-expressed in COS-7. Only reporter plasmid (pGL4-rsAHR2-3XREs) that contained three putative XRE sites in the 5'-flanking region of AHR2 gene showed a clear TCDD dose-dependent transactivation by AHR1 and AHR2 proteins. TCDD-EC50 values for the rsAHR2-derived XRE transactivation were 1.3 and 1.4聽nM for AHR1 and AHR2, respectively. These results suggest that the putative XREs of AHR2 gene have a function for AHR1- and AHR2-mediated transactivation, supporting our in ovo observation of an induction of AHR2 mRNA levels by TCDD exposure. Mutations in XREs of AHR2 gene led to a decrease in luciferase induction. Electrophoretic mobility shift assay showed that XRE1, the closest XRE from the start codon in AHR2 gene, is mainly responsible for the binding with TCDD-activated AHR. This suggests that TCDD-activated AHR1 and AHR2 up-regulate the AHR2 mRNA levels and this auto-induced AHR2 may amplify the signal transduction of its downstream targets including CYP1A in the red seabream

    Antenatal Growth, Gestational Age, Birth, Enteral Feeding, and Blood Citrulline Levels in Very Low Birth Weight Infants

    No full text
    Early enteral nutrition using reliable biomarkers of intestinal function must be established to improve neurodevelopmental outcomes in very low birth weight infants (VLBWIs). Serum citrulline levels reflect the intestinal function in adults. To elucidate the relationship among antenatal growth, postnatal enteral nutrition, and blood citrulline levels, a retrospective single-center observational study was conducted on 248 VLBWIs born between April 2014 and March 2021. A mixed effect model and post hoc simple slope analysis were used to estimate the correlations between clinical variables and citrulline levels at Early (day 5.1) and Late (day 24.3) postnatal ages. Greater gestational age, birth weight, and amount of enteral nutrition at the time of blood sampling were associated with lower citrulline levels at the Early postnatal age and higher citrulline levels at the Late postnatal age. Provided that Early citrulline levels predominantly reflect the consequence of antenatal citrulline metabolism, it is suggested that fetal growth and maturation are likely to promote citrulline catabolism in utero and its synthesis after birth. With additional insights into the temporal transition point wherein the maturation-dependent balance of citrulline metabolism shifts from catabolism-dominant to synthesis-dominant, citrulline emerges as a potential biomarker for assessing intestinal function and gastrointestinal disorders
    corecore