2,898 research outputs found

    Re/Os constraint on the time-variability of the fine-structure constant

    Full text link
    We argue that the accuracy by which the isochron parameters of the decay 187Re→187Os^{187}{\rm Re}\to ^{187}{\rm Os} are determined by dating iron meteorites may not directly constrain the possible time-dependence of the decay rate and hence of the fine-structure constant α\alpha. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the QSO absorption lines are re-examined.Comment: 7 pages, 3 figures; v2, revised top sentence on p.

    Cooling of a Compact Star with a LOFF Matter Core

    Get PDF
    Specific heat and neutrino emissivity due to direct URCA processes for quark matter in the color superconductive Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase of Quantum-Chromodynamics have been evaluated. The cooling rate of simplified models of compact stars with a LOFF matter core is estimated.Comment: 3 pages, 1 figure, to appear in the proceedings of the Helmoltz International Summer School of Theoretical Physics on Dense Matter in Heavy Ion Collisions and Astrophysics, JINR, Dubna, Russia, 21 Aug - 1 Sep 200

    Tests of a proximity focusing RICH with aerogel as radiator

    Full text link
    Using aerogel as radiator and multianode PMTs for photon detection, a proximity focusing Cherenkov ring imaging detector has been constructed and tested in the KEK π\pi2 beam. The aim is to experimentally study the basic parameters such as resolution of the single photon Cherenkov angle and number of detected photons per ring. The resolution obtained is well approximated by estimates of contributions from pixel size and emission point uncertainty. The number of detected photons per Cherenkov ring is in good agreement with estimates based on aerogel and detector characteristics. The values obtained turn out to be rather low, mainly due to Rayleigh scattering and to the relatively large dead space between the photocathodes. A light collection system or a higher fraction of the photomultiplier active area, together with better quality aerogels are expected to improve the situation. The reduction of Cherenkov yield, for charged particle impact in the vicinity of the aerogel tile side wall, has also been measured.Comment: 4 pages, 8 figure

    The origin of HE0107-5240 and the production of O and Na in extremely metal-poor stars

    Full text link
    We elaborate the binary scenario for the origin of HE0107-5240, the most metal-poor star yet observed ([Fe/H] = -5.3), using current knowledge of the evolution of extremely metal-poor stars. From the observed C/N value, we estimate the binary separation and period. Nucleosynthesis in a helium convective zone into which hydrogen has been injected allows us to discuss the origin of surface O and Na as well as the abundance distribution of s-process elements. We can explain the observed abundances of 12C, 13C, N, O, and Na and predict future observations to validate the Pop III nature of HE0107-5240.Comment: 4 pages, 3 figures, proceedings of the conference, "Nuclei in the Cosmos VIII", Nuclear Physics A in pres

    The Peculiar Type Ic Supernova 1997ef: Another Hypernova

    Get PDF
    SN 1997ef has been recognized as a peculiar supernova from its light curve and spectral properties. The object was classified as a Type Ic supernova (SN Ic) because its spectra are dominated by broad absorption lines of oxygen and iron, lacking any clear signs of hydrogen or helium line features. The light curve is very different from that of previously known SNe Ic, showing a very broad peak and a slow tail. The strikingly broad line features in the spectra of SN 1997ef, which were also seen in the hypernova SN 1998bw, suggest the interesting possibility that SN 1997ef may also be a hypernova. The light curve and spectra of SN 1997ef were modeled first with a standard SN~Ic model assuming an ordinary kinetic energy of explosion EK=1051E_{\rm K} = 10^{51} erg. The explosion of a CO star of mass MCO≈6M⊙M_{\rm CO} \approx 6 M_\odot gives a reasonably good fit to the light curve but clearly fails to reproduce the broad spectral features. Then, models with larger masses and energies were explored. Both the light curve and the spectra of SN 1997ef are much better reproduced by a C+O star model with EK=E_{\rm K} = 8 \e{51} erg and MCO=10M⊙M_{\rm CO} = 10 M_\odot. Therefore, we conclude that SN 1997ef is very likely a hypernova on the basis of its kinetic energy of explosion. Finally, implications for the deviation from spherical symmetry are discussed in an effort to improve the light curve and spectral fits.Comment: "To appear in the Astrophysical Journal, Vol.534 (2000)

    Hypernova Nucleosynthesis and Galactic Chemical Evolution

    Get PDF
    We study nucleosynthesis in 'hypernovae', i.e., supernovae with very large explosion energies ( \gsim 10^{52} ergs) for both spherical and aspherical explosions. The hypernova yields compared to those of ordinary core-collapse supernovae show the following characteristics: 1) Complete Si-burning takes place in more extended region, so that the mass ratio between the complete and incomplete Si burning regions is generally larger in hypernovae than normal supernovae. As a result, higher energy explosions tend to produce larger [(Zn, Co)/Fe], small [(Mn, Cr)/Fe], and larger [Fe/O], which could explain the trend observed in very metal-poor stars. 2) Si-burning takes place in lower density regions, so that the effects of α\alpha-rich freezeout is enhanced. Thus 44^{44}Ca, 48^{48}Ti, and 64^{64}Zn are produced more abundantly than in normal supernovae. The large [(Ti, Zn)/Fe] ratios observed in very metal poor stars strongly suggest a significant contribution of hypernovae. 3) Oxygen burning also takes place in more extended regions for the larger explosion energy. Then a larger amount of Si, S, Ar, and Ca ("Si") are synthesized, which makes the "Si"/O ratio larger. The abundance pattern of the starburst galaxy M82 may be attributed to hypernova explosions. Asphericity in the explosions strengthens the nucleosynthesis properties of hypernovae except for "Si"/O. We thus suggest that hypernovae make important contribution to the early Galactic (and cosmic) chemical evolution.Comment: To be published in "The Influence of Binaries on Stellar Population Studies", ed. D. Vanbeveren (Kluwer), 200

    Retrieval of Wintertime Sea Ice Production in Arctic Polynyas Using Thermal Infrared and Passive Microwave Remote Sensing Data

    Get PDF
    Precise knowledge of wintertime sea ice production in Arctic polynyas is not only required to enhance our understanding of atmosphere‐sea ice‐ocean interactions but also to verify frequently utilized climate and ocean models. Here, a high‐resolution (2‐km) Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared satellite data set featuring spatial and temporal characteristics of 17 Arctic polynya regions for the winter seasons 2002/2003 to 2017/2018 is directly compared to an akin low‐resolution Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) passive microwave data set for 2002/2003 to 2010/2011. The MODIS data set is purely based on a 1‐D energy‐balance model, where thin‐ice thicknesses (≀ 20 cm) are directly derived from ice‐surface temperature swath data and European Centre for Medium‐Range Weather Forecasts Re‐Analysis‐Interim atmospheric reanalysis data on a quasi‐daily basis. Thin‐ice thicknesses in the AMSR‐E data set are derived empirically. Important polynya properties such as areal extent and potential thermodynamic ice production can be estimated from both pan‐Arctic data sets. Although independently derived, our results show that both data sets feature quite similar spatial and temporal variations of polynya area (POLA) and ice production (IP), which suggests a high reliability. The average POLA (average accumulated IP) for all Arctic polynyas combined derived from both MODIS and AMSR‐E are 1.99×105 km2 (1.34×103 km3) and 2.29×105 km2 (1.31×103 km3), respectively. Narrow polynyas in areas such as the Canadian Arctic Archipelago are notably better resolved by MODIS. Analysis of 16 winter seasons provides an evaluation of long‐term trends in POLA and IP, revealing the significant increase of ice formation in polynyas along the Siberian coast

    Identification of miRNA signatures associated with radiation-induced late lung injury in mice.

    Get PDF
    Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180). Within the first two weeks after exposure, weight gain slowed compared to sham treated mice along with a temporary drop in white blood cell counts. 52% of C3H (33 of 64) and 72% of C57Bl/6 (46 of 64) irradiated mice died due to late radiation injury. Lung and heart damage, as assessed by computed tomography (CT) and histology at 150 (C3H mice) and 180 (C57Bl/6 mice) days, correlated well with the appearance of a local, miRNA signature in the lung and heart tissue of irradiated animals, consistent with inherent differences in the C3H and C57Bl/6 strains in their propensity for developing radiation-induced pneumonitis or fibrosis, respectively. Radiation-induced changes in the circulating miRNA profile were most prominent within the first 30 days after exposure and included miRNA known to regulate inflammation and fibrosis. Importantly, early changes in plasma miRNA expression predicted survival with reasonable accuracy (88-92%). The miRNA signature that predicted survival in C3H mice, including miR-34a-5p, -100-5p, and -150-5p, were associated with pro-inflammatory NF-ÎșB-mediated signaling pathways, whereas the signature identified in C57Bl/6 mice (miR-34b-3p, -96-5p, and -802-5p) was associated with TGF-ÎČ/SMAD signaling. This study supports the hypothesis that plasma miRNA profiles could be used to identify individuals at high risk of organ-specific late radiation damage, with applications for radiation oncology clinical practice or in the context of a radiological incident
    • 

    corecore