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THE PECULIAR TYPE Ic SUPERNOVA 1997ef : ANOTHER HYPERNOVA
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ABSTRACT
SN 1997ef has been recognized as a peculiar supernova from its light curve and spectral properties.

The object was classiÐed as a Type Ic supernova (SN Ic) because its spectra were dominated by broad
absorption lines of oxygen and iron, lacking any clear signs of hydrogen or helium line features. The
light curve is very di†erent from that of previously known SNe Ic, showing a very broad peak and a
slow tail. The strikingly broad line features in the spectra of SN 1997ef, which were also seen in the
hypernova SN 1998bw, suggest the interesting possibility that SN 1997ef may also be a hypernova. The
light curve and spectra of SN 1997ef were modeled Ðrst with a standard SN Ic model assuming an ordi-
nary kinetic energy of explosion ergs. The explosion of a CO star of mass givesE

K
\ 1051 MCO B 6 M

_a reasonably good Ðt to the light curve but clearly fails to reproduce the broad spectral features. Then,
models with larger masses and energies were explored. Both the light curve and the spectra of SN 1997ef
are much better reproduced by a C]O star model with ergs and There-E

K
\ 8 ] 1051 MCO\ 10 M

_
.

fore, we conclude that SN 1997ef is very likely a hypernova on the basis of its kinetic energy of explo-
sion. Finally, implications for the deviation from spherical symmetry are discussed in an e†ort to
improve the Ðts to the observations.
Subject headings : galaxies : individual (UGC 4107) È radiative transfer È

supernovae : individual (SN 1997ef )

1. INTRODUCTION

The supernova 1997ef (SN 1997ef) was discovered on
1997 November 25 at an R magnitude of 16.7 near the spiral
galaxy UGC 4107 (Sano 1997). The Ðrst spectrum was
taken on November 26 (Garnavich et al. 1997a). Subse-
quently, photometric and spectroscopic follow-ups have
provided high-quality optical light curves and spectra
(Garnavich et al. 1997a, 1997b, 1997c ; Hu et al. 1997 ;
Filippenko 1997 ; Wang & Wheeler 1998). As seen in
Figure 1, the spectra of SN 1997ef are dominated by broad
oxygen and iron lines but do not show any clear feature of
hydrogen or helium (Garnavich et al. 1997c ; Filippenko et
al. 1997), showing the overall similarity to other Type Ic
supernovae (SNe Ic) SN 1994I and SN 1998bw. This led us
to classify SN 1997ef as a SN Ic.

In Figure 2 the visual light curve of SN 1997ef
(Garnavich et al. 1997b, 1997c) is compared with those of
the SN Ic SN 1998bw (Galama et al. 1998) and the ordinary
SN Ic SN 1994I (Richmond et al. 1996a, 1996b). Despite the
spectral similarity, the light curve of SN 1997ef is quite
di†erent from those of SN 1998bw and SN 1994I. It has
quite a Ñat peak, much broader than those of the other SNe
Ic. Besides, the tail of the light curve of SN 1997ef starts late
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and the rate of its decline is much slower than in other SNe
Ic. It is also true that the light curves are rather diverse,
even in this limited number of samples, implying a range of
energies and/or progenitor masses of SN Ic explosions.

The most striking and peculiar characteristic of SN
1997ef is the breadth of its line features. Such broad spectral
features were later recognized to be a distinguishing pro-
perty of the spectra in SN 1998bw (Fig. 1). SN 1998bw was
discovered within the error box of GRB 980425 determined
by the BeppoSAX satellite, only 0.9 days after the date of
the gamma-ray burst (GRB), and therefore probably related
to this GRB (Galama et al. 1998). The very broad spectral
features and the light-curve shape have led to the conclu-
sion that SN 1998bw had an extremely large kinetic energy
of explosion, ergs (Iwamoto et al. 1998 ;E

K
D 3 ] 1052

Woosley, Eastman, & Schmidt 1999). This was 1 order of
magnitude larger than the energy of typical supernovae ;
thus, SN 1998bw was termed a ““ hypernova ÏÏ (Iwamoto et
al. 1998).

The spectral similarities between SN 1997ef and SN
1998bw suggest the interesting possibility that SN 1997ef
may also be a hypernova. In fact, a possible connection with
a GRB has been suggested for SN 1997ef : GRB 971115
appears to be compatible with the supernova in the position
and the time of occurrence (Wang & Wheeler 1998). Since
the statistical signiÐcance for this case is much weaker than
for the case of SN 1998bw and GRB 980425, it is difficult to
conÐrm the physical association between SN 1997ef and
GRB 971115. However, it is possible at least to clarify
whether or not SN 1997ef is a hypernova by estimating the
kinetic energy of explosion through modeling of light curves
and spectra as in the case of SN 1998bw (Iwamoto et al.
1998 ; Mazzali 1999). This is exactly the primary purpose of
this paper.

We constructed supernova progenitor models and per-
formed detailed hydrodynamics and radiation transfer cal-
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FIG. 1.ÈObserved spectra of Type Ic supernovae SN 1997ef, SN
1998bw, and SN 1994I.

culations to obtain light curves and spectra for the
explosion models. The results were compared with obser-
vations of SN 1997ef in order to derive its explosion energy
and the ejecta mass and thus to determine whether SN
1997ef was an ordinary SN Ic or a hypernova. Since the
light curves of the other SNe Ic SN 1994I and SN 1998bw
were successfully reproduced by the collapse-induced explo-
sion of C]O stars (Nomoto et al. 1994 ; Iwamoto et al.
1994, 1998), we adopted C]O stars as progenitor models
for SN 1997ef as well.

FIG. 2.ÈAbsolute magnitudes of Type Ic supernovae : the ordinary SN
Ic SN 1994I (Richmond et al. 1996a, 1996b), the hypernova SN 1998bw
(Galama et al. 1998), and the proposed hypernova SN 1997ef. The dashed
line indicates the 56Co decay rate.

This paper consists of six sections including this intro-
duction. Section 2 describes the ordinary SN Ic model and
the hypernova model. The method and results of our light-
curve calculations are presented in ° 3. The synthetic spectra
are compared with the observations in ° 4. Section 5 is
devoted to discussion on various issues including the
SN-GRB connection and possible progenitor scenarios.
Finally, our conclusions are summarized in ° 6.

2. EXPLOSION MODELS FOR SUPERNOVAE AND

HYPERNOVAE

We construct hydrodynamical models of an ordinary SN
Ic and a hypernova as follows.

1. In the ordinary SN Ic model (model CO60), a C]O
star with a mass (which is the core of a 25MCO\ 6.0 M

_main-sequence star) explodes with kinetic energy ofM
_explosion ergs and ejecta massEK \ 1.0 ] 1051 Mej \MCOHere (\1.4 denotes the mass[ Mrem\ 4.6 M

_
. Mrem M

_
)

of the compact star remnant (either a neutron star or a
black hole).

2. In the hypernova model (CO100), a C]O star of
is constructed from the 10 He starMCO\ 10.0 M

_
M

_(which has an 8 C]O core) by removing the outermostM
_2 of He layer and extending the C]O layer up to 10.0M

_This model corresponds to 30È35 on the mainM
_

. M
_sequence. This progenitor goes o† with E
K

\ 8.0] 1051
ergs and i.e.,Mej \ 7.6 M

_
, Mrem \ 2.4 M

_
.

The hydrodynamics at early phases was calculated by
using a Lagrangian PPM code (Colella & Woodward 1984)
with a simple nuclear reaction network including 13 alpha
elements 1986). Detailed postprocessing calcu-(Mu� ller
lations were carried out with a larger size nuclear reaction
network including 240 isotopes (Hix & Thielemann 1996).
The explosion is triggered by depositing thermal energy in a
couple of zones just below the mass cut so that the Ðnal
kinetic energy becomes the required value. The position of
the mass cut is adjusted for the ejected mass of 56Ni to be
M(56Ni)\ 0.15 M

_
.

The compact remnant in CO60 is likely a neutron star
because while it may be a black hole inMrem \ 1.4 M

_
,

CO100 because (\2.4 may well exceed theMrem M
_

)
maximum mass of a stable neutron star. The above values
of are determined so that M(56Ni)\ 0.15 isMrem M

_ejected to reproduce the maximum brightness of SN 1997ef
by the radioactive decay heating of 56Ni and 56Co.

These model parameters are summarized in Table 1.
They can be constrained by comparing the calculated light
curves and synthetic spectra with observations. The param-
eters of models CO21 for SN 1994I (Nomoto et al. 1994 ;
Iwamoto et al. 1994) and CO138 for SN 1998bw (Iwamoto
et al. 1998) are also given in Table 1. We constructed the
progenitor model by attaching a thin hydrostatic and in-
thermal-equilibrium C]O envelope to the C]O core of
the presupernova model (Nomoto & Hashimoto 1988 ;
Hashimoto 1995).

The expansion soon becomes homologous so that vP r.
The solid lines in Figure 3 show the density distributions in
the velocity space for CO60 and CO100 at t \ 16 days. The
expansion velocities are clearly higher in CO100 than in
CO60. Figures 4 and 5 show the composition structure of
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TABLE 1

PARAMETERS OF THE CO STAR MODELS

C]O Core Mass Ejecta Mass 56Ni Mass E
K

Model (M
_

) (M
_

) (M
_

) (1051 ergs)

CO21 . . . . . . . 2.1 0.9 0.07 1
CO60 . . . . . . . 6.0 4.4 0.15 1
CO100 . . . . . . 10.0 7.6 0.15 8
CO138 . . . . . . 13.8 10.8 0.7 D30

models CO60 and CO100, respectively, against the expan-
sion velocity and the Lagrangian mass coordinate of the
progenitor. In CO100, the Fe and Si-rich layers expand
much faster than in CO60. The total amount of nucleo-
synthesis products are summarized in Table 2.

FIG. 3.ÈDensity distributions against the velocity of homologously
expanding ejecta for CO60 and CO100

3. LIGHT-CURVE MODELS

3.1. Radiation Hydrodynamics Code
The light-curve calculation is started, when the ejecta

have reached the homologous expansion phase, with a one-
dimensional spherically symmetric radiation transfer code
(Iwamoto 1997).

The code solves the multifrequency radiative transfer
equation for the speciÐc intensity in the comoving frame,Ilincluding all terms up to the Ðrst order in v/c (Mihalas &
Mihalas 1984) :

1
c
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FIG. 4.ÈChemical composition of model CO60 plotted against the expansion velocity
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FIG. 5.ÈChemical composition of model CO100 plotted against the expansion velocity. Note that this is the result of the nucleosynthesis calculation with
a spherically symmetric model and that the light curve computation, 56N, is distributed homogeneously as explained in the text.

where and are the absorptive and scattering opacities,il plrespectively, is the Planck function, and k is the cosine ofBlthe angle made by the radial direction and the direction of
the ray. This equation is solved numerically using the Feau-
trier method with an approximate lambda operator similar
to the one described by Hauschildt (1992).

To determine the gas temperatures, equation (1) is solved
simultaneously with the energy equation and the Ðrst two
moment equations of equation (1). The energy equation of
the radiation plus gas is written as

L
Lt
A
e] E

o
B

\ v[ (P] fE)
L
Lt
A1
o
B

[ 4n
L

LM
r
(r2F)] (3f[ 1)

vE
or

, (2)

while the radiation energy and momentum equations are

L
Lt
AE
o
B

\ c
o

(i
P
aT 4[ i

E
E)[ fE

L
Lt
A1
o
B

[ 4n
L

LM
r
(r2F)] (3f[ 1)

vE
or

, (3)

and

LF
Lt

\ [
A
cs

F
] 2v

r
B
F[ 4nr2o

]
A
c2 L( fE)

LM
r
] 2F

Lv
LM

r

B
[ (3f [ 1)

c2E
r

, (4)

respectively, where e is the thermal energy of ions and elec-
trons per unit mass, and E, F, and f are the radiation energy
density, Ñux, and the Eddington factor deÐned as follows :

E\ 2n
c
P
0

=
dl
P
~1

1
Il dk , (5)

F\ 2n
P
0

=
dl
P
~1

1
Il k dk , (6)

f \ /0= dl /~11 Ilk2 dk
/0= dl /~11 Il dk

. (7)

Partial derivatives with respect to t in equations (1)È(4)
are all Lagrangian time derivatives. The absorptive and
scattering parts of the opacity are given as

il \ v(ibvb] ibvf) ] ifvf , (8)
and

pl \ (1[ v)(ibvb] ibvf) ] n
e
pT , (9)

TABLE 2

PREDICTED YIELDS OF SN1997EF (M
_
)

Model C O Si S Ca Fe 44Ti 56Ni 57Ni

CO60 . . . . . . . 5.2 ] 10~2 3.0 0.10 3.7] 10~2 5.7] 10~3 0.16 2.1] 10~4 0.15 5.7] 10~3
CO100 . . . . . . 0.58 5.6 0.42 0.19 2.5] 10~2 0.19 4.5] 10~5 0.15 5.7] 10~3
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and are the bound-bound, bound-free, andibvb, ibvf, ifvffree-free opacities, respectively ; is the number density ofn
efree electrons, and is the Thomson scattering crosspTsection. In the moment equations, the energy mean and(i

E
)

the Planck mean opacities include only the absorptive(iP)part, while the Ñux mean opacity is the total opacity.(s
F
)

For bound-bound transitions, energy levels and tran-
sition probabilities are taken from the compilation by
Kurucz (1991). For bound-free data, we use the analytic
Ðtting formula to the photoionization cross sections given
by Verner & Yakovlev (1995). Local thermodynamic equi-
librium (LTE) is assumed to determine the ionization
balance and the level populations of each ion. However, the
non-LTE e†ect is approximately taken into account by
assuming that the value of the absorptive fraction v is a
constant less than unity in equations (8) and (9). Experi-
ments of spectral syntheses have shown that a value v\ 0.1
is a reasonable choice for this fraction (Baron et al. 1996).

We neglected the e†ect of relative motion within the
ejecta, i.e., the expansion e†ect, in evaluating the mean opa-
cities, although this is one of the currently controversial
issues. It has been argued by several authors that the expan-
sion would increase the chance of interactions between radi-
ation and matter through line transitions, and thus the
mean opacities become larger than in static medium, espe-
cially at relatively early phases (Karp, Lasher, & Chan
1977 ; Eastman & Pinto 1993 ; Blinnikov 1996).

The energy deposition due to the radioactive decays is
calculated with a one energy-group c-rayÈtransfer code
(Iwamoto 1997). We assume an absorptive opacity ic\0.03 and the complete trapping of positrons. The rest-frame
Ñux is calculated from the comoving-frame intensities using
the following transformation :

Fl,rest \ 2n
P
~1

1
(k ] b)I

A
k,

l
1 ] bk

B
dk , (10)

Fj,rest\
l2
c

Fl,rest . (11)

For the calculation of the light curves of CO60 and
CO100 discussed in the next subsection, we use about 200
radial mesh points to solve the moment equations (2)È(4),
while 800 frequency and 50 radial mesh points were used for
the multifrequency radiative transfer equation (1).

3.2. L ight-Curve Models
In Figure 6 we compare the calculated V light curves for

models CO60 and CO100 with the observed V light curve
of SN 1997ef. We adopt a distance of 52.3 Mpc (a distance
modulus of k \ 33.6 mag) as estimated from the recession
velocity, 3,400 km s~1 (Garnavich et al. 1997a) and a
Hubble constant km s~1 Mpc~1. We assume noH0\ 65
color excess [E(B[V )\ 0.00] ; this is justiÐed by the fact
that no signature of a narrow Na I D interstellar absorption
line is visible in the spectra of SN 1997ef at any epochs
(Garnavich et al. 1997a). The light curve of SN 1997ef has a
very broad maximum, which lasts for D25 days. This is
much broader than in both the ordinary SN Ic 1994I and
the hypernova SN 1998bw. The light-curve tail of SN
1997ef starts only D40 days after maximum, much later
than in other SNe Ic.

The light curve of SN 1997ef can be reproduced basically
with various explosion models with di†erent energies and
masses. In general, the properties of the light curve are char-

FIG. 6.ÈCalculated visual light curves of CO60 and CO100 compared
with that of SN 1997ef.

acterized by the decline rate in the tail and the peak width,
The peak width scales approximately asqpeak.

qpeak P i1@2Mej3@4 E
K
~1@4 , (12)

where i denotes the optical opacity (Arnett 1996). This is
the timescale on which photon di†usion and hydrodynami-
cal expansion become comparable. Since the model param-
eters of CO100 and CO60 give similar the light curvesqpeak,of the two models look similar : both have quite a broad
peak and reproduce the light curve of SN1997ef reasonably
well (Fig. 6).

The light-curve shape depends also on the distribution of
56Ni, which is produced in the deepest layers of the ejecta.
More extensive mixing of 56Ni leads to an earlier rise of the
light curve. For SN 1997ef, the best Ðt is obtained when the
56Ni is mixed almost uniformly to the surface for both
models. Without such extensive mixing, the rise time to
V \ 16.5 mag would be D30 days for CO100, which is
clearly too long to be compatible with the spectroscopic
dating (see ° 4).

Model CO60 has the same kinetic energy (E
K

\ 1 ] 1051
ergs) as model CO21, which was used for SN Ic 1994I (see
Table 1 for the model parameters). Since the light curve of
SN 1997ef is much slower than that of SN 1994I, the ejecta
mass of CO60 is D5 times larger than that of CO21.

The ejecta mass of CO100 is a factor of D2 larger than
that of CO60, and it is only D20% smaller than that of
model CO138, which was used for SN 1998bw (Table 1).
Thus the explosion energy of CO100 should be D8 times
larger than that of CO60 to reproduce the light curve of SN
1997ef. This explosion is very energetic but still much
weaker than the one in CO138. The smaller for a compa-E

Krable mass allows CO100 to reproduce the light curve of SN
1997ef, which has a much broader peak than that of SN
1998bw.

The light curve of SN 1997ef enters the tail around day
40. Since then, the observed V magnitude declines linearly
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FIG. 7.ÈEvolution of the calculated photospheric velocities of CO60
and CO100 (solid lines) compared with the observed velocities of the Si II

634.7, 637.1 nm line measured in the spectra at the absorption core.

with time at a rate of D1.1] 10~2 mag day~1, which is
slower than in other SNe Ic and is even close to the 56Co
decay rate 9.6 ] 10~3 mag day~1. Such a slow decline
implies much more efficient c-ray trapping in the ejecta of
SN 1997ef than in SN 1994I. The ejecta of both CO100 and
CO60 are fairly massive and are able to trap a large fraction
of the c-rays, so that the calculated light curves have slower
tails compared with CO21.

However, the light curves for both models decline some-
what faster in the tail than the observations. A similar dis-
crepancy has been noted for the Type Ib supernovae (SNe
Ib) SN 1984L and SN 1985F (Swartz & Wheeler 1991 ;
Baron, Young, & Branch 1993). The late-time light-curve
decline of these SNe Ib is as slow as the 56Co decay rate, so
that the inferred value of M is signiÐcantly larger (and/or

is smaller) than those obtained by Ðtting the early light-E
Kcurve shape. Baron et al. (1993) suggested that the ejecta of

these SNe Ib must be highly energetic and as massive as
D50 In ° 5.1, we will suggest that such a discrepancyM

_
.

between the early- and late-time light curves might be an
indication of asphericity in the ejecta of SN 1997ef and that
it might be the case in those SNe Ib as well.

3.3. Photospheric Velocities
As we have shown, light-curve modeling provides direct

constraints on and However, it is difficult to dis-MCO E
K
.

tinguish between the ordinary SN Ic and the hypernova
model from the light-curve shape alone, since models with
di†erent values of and can reproduce similar lightMej E

Kcurves. However, these models are expected to show di†er-
ent evolutions of the photospheric velocity and the spec-
trum as will be discussed in the following sections.

The photospheric velocity scales roughly as vphP
so that and can be constrained by inMej~1@2E

K
1@2, Mej E

K
vpha di†erent way from by means of the light-curve width.

Figure 7 shows the evolution of the observed velocities of
the Si II line measured in the spectra at the absorption core,
and the velocities at the gray photosphere computed by the
light-curve code for models CO60 and CO100. The veloci-
ties of the Si II line are somewhat higher than that of the
photosphere, reaching D20,000 km s~1 at the earliest time.

In model CO60 the photosphere forms at velocities much
smaller than those of the observed lines, while CO100 gives
photospheric velocities as high as the observed ones. It is
clear, from this comparison, that the hyperenergetic model
CO100 is preferable to the ordinary model CO60. The
apparent discrepancy that still exists between the CO100
and observations might be related to the morphology of the
ejecta, i.e., its deviation from spherical symmetry, as was
also suggested in the case of SN 1998bw Wheeler,(Ho� Ñich,
& Wang 1998 ; Iwamoto et al. 1998). This issue will be
discussed in ° 5.1.

4. SYNTHETIC SPECTRA

To strengthen the arguments in ° 3.3, we compare the
observed spectra with theoretical model spectra computed
using our explosion models with a more sophisticated spec-
trum synthesis code (Mazzali & Lucy 1993 ; Lucy 1999 ;
Mazzali 1999). With such a detailed spectrum synthesis, we
can distinguish between di†erent models more clearly
because the spectrum contains much more information
than a single-band light curve.

Around maximum light, the spectra of SN 1997ef show
just a few very broad features and are quite di†erent from
those of ordinary SNe Ib/c but similar to those of SN
1998bw. However, at later epochs the spectra develop fea-
tures that are easy to identify, such as the Ca II IR triplet at
D8200 the O I absorption at 7500 several Fe II fea-A� , A� ,
tures in the blue, and they look very similar to the spectrum
of the ordinary SN Ic SN 1994I.

We computed synthetic spectra with a Monte Carlo spec-
trum synthesis code using the density structure and com-
position of the hydrodynamic models CO60 and CO100.
The code is based on the pure scattering code described by
Mazzali & Lucy (1993) but has been improved to include
photon branching, so that the reprocessing of the radiation
from the blue to the red is followed more accurately and
efficiently (Lucy 1999 ; Mazzali 1999).

We produced synthetic spectra for three epochs near
maximum of SN 1997ef : November 29, December 5, and
December 17. These are early enough that the spectra are

TABLE 3

PARAMETERS OF THE SYNTHETIC SPECTRA

Date Epoch L vph vSiII log oph Mass Teff Tbb
(1997) (days) (ergs s~1) (km s~1) (R

_
) (g cm~3) (M

_
) (K) (K) Bmod Vmod Vobs BC Mmod

Nov 29 . . . . . . 9 42.17 15500 19072 [12.65 0.71 6123 7666 17.45 16.75 16.7 0.28 [16.700
Dec 5 . . . . . . . 15 42.19 9500 13962 [12.30 3.02 6128 9407 17.35 16.63 16.5 0.35 [16.750
Dec 17 . . . . . . 27 42.24 7500 8011 [12.67 4.79 5291 6697 17.70 16.59 16.6 0.26 [16.875
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FIG. 8.ÈObserved spectra of SN 1997ef (bold lines) and synthetic
spectra computed using model CO60. The line features seen in the syn-
thetic spectra are much too narrow compared with observations.

very sensitive to changes in the kinetic energy. As in the
light-curve comparison, we adopted a distance modulus of
k \ 33.6 mag, and E(B[V )\ 0.00. The model parameters,
the computed temperatures, and the magnitudes of the syn-
thetic spectra for CO100 are listed in Table 3.

In Figure 8 we show the synthetic spectra computed with
the ordinary SN Ic model CO60. The lines in the spectra
computed with this model are always much narrower than
the observations. This clearly indicates a lack of material at
high velocity in model CO60 and suggests that the kinetic
energy of this model is much too small.

FIG. 9.ÈComparison between the observed spectra of SN 1997ef (bold
lines) and synthetic spectra computed using model CO100 (solid lines). The
Ðts are much improved with CO100 compared with the ones with CO60.

Synthetic spectra obtained with the hypernova model
CO100 for the same three epochs are shown in Figure 9.
The spectra show much broader lines and are in good
agreement with the observations. In particular, the blending
of the Fe lines in the blue, giving rise to broad absorption
troughs, is well reproduced, and so is the very broad Ca-O
feature in the red. The two ““ emission peaks ÏÏ observed at
D4400 and 5200 correspond to the only two regions inA�
the blue that are relatively line-free. A similar situation is
observed in SN 1998bw (Iwamoto et al. 1998).

The spectra are characterized by a low temperature, even
near maximum, because the rapid expansion combined with
the relatively low luminosity (from the tail of the light curve,
we deduce that SN 1997ef produced about 0.15 ofM

_56Ni, compared to about 0.6 in a typical SN Ia andM
_0.7 in SN 1998bw) leads to rapid cooling. Thus theM

_Si II 6355 line is not very strong.A�
Although model CO100 yields rather good synthetic

spectra, it still fails to reproduce the observed large width of
the O IÈCa II feature in the only near-maximum spectrum
that extends sufficiently far to the red (1997 December 5).
An improvement can be obtained by introducing an arbi-
trary Ñattening of the density proÐle at the highest veloci-
ties.

Full details of the spectrum synthesis calculations, includ-
ing insights on the density structure and the abundance in
the ejecta will be given in a separate paper (P. A. Mazzali et
al. 2000, in preparation).

5. DISCUSSION

5.1. Possible Aspherical E†ects
We have shown that the light curve, the photospheric

velocities, and the spectra of SN 1997ef are better repro-
duced with the hyperenergetic model CO100 than with the
ordinary SN Ic model CO60. However, there remain several
features that are still difficult to explain with model CO100.

1. The observed velocity of Si II decreases much more
rapidly than models predict. It is as high as D30,000 km
s~1 at the earliest phase, but it gets as low as D3000 km s~1
around day 50 (Fig. 7). We Ðnd that it is difficult to get such
a rapid drop of the photospheric velocity not only in models
CO100 and CO60 but also in other models that can repro-
duce the light-curve shape reasonably well. Models with
higher energies and/or smaller masses would be able to
reproduce the fast evolution of the photospheric velocity,
but such models would inevitably produce light curves with
a narrower peak and a faster tail.

2. Obviously, the observed light curve declines slower
than model CO100 in the tail part, and it is also a bit Ñatter
than the model near the maximum part (Fig. 6). Models
with lower energies and/or larger masses are able to give
improved Ðts to both the peak and the tail of the light curve.
But then it gets very difficult to reproduce the large photo-
spheric velocities observed at early times in SN 1997ef.

This dilemma might be overcome if we introduce multi-
ple components of the light curve from di†erent parts of
ejecta moving at di†erent velocities. In fact, the discrep-
ancies may be interpreted as a possible sign of asphericity in
the ejecta : A part of ejecta moves faster than average to
form the lines at such high velocities at early phases, while
the other part of ejecta expands with a lower velocity so
that the low-velocity Si II line comes up at later epochs.
Having a low-velocity component would also make it easier
to reproduce the slow tail.
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3. Extensive mixing of 56Ni is required to reproduce the
short rise time of the light curve. According to hydrody-
namical simulations of the Rayleigh-Taylor instability in
the ejecta of envelope-stripped supernovae (Hachisu et al.
1991 ; Iwamoto et al. 1997), large-scale mixing cannot be
expected to occur in massive progenitors because in the
core of such massive stars, the density gradient is not steep
enough around the composition interfaces. One possibility
to induce such mixing in the velocity space is an asymmetric
explosion (e.g., Nagataki, Shimizu, & Sato 1998). Higher
velocity 56Ni could reach the ejecta surface so that the e†ect
of radioactive heating comes up as early as is required from
light-curve modeling.

In order to realize higher densities at low-velocity regions
without increasing the mass of ejecta signiÐcantly, it may be
necessary that the explosion is somewhat aspherical. If the
explosion is aspherical, the shock would be stronger and the
material would expand at a larger velocity in a certain
direction, while in its perpendicular direction, on the other
hand, the shock would be weaker, ejecting lower velocity
material. The density of the central region could be high
enough for c-rays to be trapped even at advanced phases,
thus giving rise to a slowly declining tail (see Nakamura et
al. 1999a for a discussion of SN 1998bw). In the extremely
asymmetric cases, the material ejection may happen in a
jetlike form. A jet could easily bring some 56Ni from the
deepest layer to the surface of high velocity. Detailed spec-
tral analysis of observed spectra for di†erent epochs are
necessary to investigate this issue further.

5.2. Gamma-Ray Bursts/Supernovae
Connection and SN 1997ef

There have been an increasing number of candidates for
the gamma-ray burst (GRB)/supernova connection, includ-
ing GRB 980425/SN 1998bw (Galama et al. 1998 ; Iwamoto
et al. 1998 ; Iwamoto 1999), GRB 970514/SN 1997cy
(Germany et al. 2000 ; Turatto et al. 2000), GRB 980910/SN
1999E (Thorsett & Hogg 1999). Two other high-z GRBs
may also be associated with supernovae : GRB 980326
(Bloom et al. 1999) and GRB 970228 (Reichart 1999 ;
Galama et al. 2000). The optical transients of these GRBs
showed signiÐcant reddening and temporal slow-down
(even with a second maximum) in their late light curves,
which can be Ðtted by the early power-law decay plus the
redshifted light curve of SN 1998bw.

As noted in ° 1, a possible connection between SN 1997ef
and GRB 971115 has been suggested (Wang & Wheeler
1998). Recently another SN Ic, SN 1998ey, showed a spec-
trum with very broad features, very similar spectra to those
of SN1997ef on December 17 (Garnavich, Jha, & Kirshner
1998), but no GRB counterpart has been proposed for SN
1998ey. Although this may cast some doubt on the general
association between hypernovae and GRBs, it must be
noted that both SNe 1997ef and 1998ey were less energetic
events than SN 1998bw. It is possible that a weaker explo-
sion is less efficient in collimating the c-rays to give rise to a
detectable GRB (GRB 980425 was already quite weak in
gamma-rays compared to the average GRBs) or that some
degree of inclination of the beam axis to the line-of-sight
results in a seemingly weaker supernova and in the nonde-
tection of a GRB. Only the accumulation of more data will
allow us to address these questions.

5.3. T he Mass of Ejected 56Ni
For the study of the chemical evolution of galaxies, it is

important to know the mass of 56Ni, M(56Ni), synthesized
in core-collapse supernovae as a function of the main-
sequence mass of the progenitor star (e.g., NakamuraMmset al. 1999b). From our analysis of SN 1997ef, we can add a
new point on this diagram.

We evaluate the uncertainty in our estimates of M(56Ni)
and We need 0.15 of 56Ni to get a reasonable ÐtMms. M

_to the light curve of SN 1997ef at a distance D\ 52.3 Mpc.
The expected 10% uncertainty in the distance leads
to a 20% uncertainty in the 56Ni mass, i.e.,
M(56Ni)\ 0.15^ 0.03 The distribution of 56Ni a†ectsM

_
.

the peak luminosity somewhat, but the e†ect is found to be
much smaller than that of the uncertainty in the distance. A
10 C]O star corresponds to a butM

_
Mms\ 30È35 M

_
,

the uncertainty involved in the conversion of the core mass
to may involve a larger uncertainty if the progenitorMmsundergoes a close binary evolution.

Figure 10 shows M(56Ni) against obtained fromMmsÐtting the optical light curves of SNe 1987A, 1993J, and
1994I (e.g., Shigeyama & Nomoto 1990 ; Nomoto et al.
1993, 1994 ; Shigeyama et al. 1994 ; Iwamoto et al. 1994 ;
Woosley et al. 1994 ; Young, Baron, & Branch 1995). The
amount of 56Ni appears to increase with increasing ofMmsthe progenitor, except for SN II SN 1997D (Turatto et al.
1998).

This trend might be explained as follows. Stars with
form a neutron star, producingMms[ 25 M

_
D0.08^ 0.03 56Ni as in SN IIb SN 1993J, SN Ic SNM

_1994I, and SN 1987A (although SN 1987A may be a bord-
erline case between neutron star and black hole formation).
Stars with form a black hole (e.g., Ergma &MmsZ 25 M

_van den Heuvel 1998) ; whether they become hypernovae or
ordinary SNe II may depend on the angular momentum in
the collapsing core. For SN 1997D, because of the large
gravitational potential, the explosion energy is so small that
most of 56Ni fell back onto a compact star remnant ; the
fallback might cause the collapse of the neutron star into a
black hole. The core of SN II SN 1997D might not have a
large angular momentum because the progenitor had a
massive H-rich envelope so that the angular momentum of
the core might have been transported to the envelope poss-
ibly via a magnetic Ðeld e†ect. Similarly, a negligible
amount of ejection of 56Ni in black hole formation has
recently been suggested for X-ray Nova Sco (GRO

FIG. 10.ÈEjected 56Ni mass vs. the main-sequence mass of the progeni-
tors of several bright supernovae obtained from light-curve models.
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J1655[40), where the companion star of the black hole
seems to be enriched with S, Si, Mg, and O but not Fe
(Israelian et al. 1999). Hypernovae such as SNe 1998bw,
1997ef, and 1997cy might have rapidly rotating cores owing
possibly to the spiraling-in of a companion star in a binary
system. The outcome certainly depends also on mass-loss
rate and binarity.

As noted in ° 5.2, it has been claimed that the optical
afterglows of GRBÏs 980326 and 970228 are better repro-
duced if a redshifted light curve of SN 1998bw is superposed
on the power-law light component (Bloom et al. 1999 ; Rei-
chart 1999 ; Galama et al. 2000). A question arising from
these two examples is whether the supernovae associated
with GRBs have a uniform maximum luminosity, i.e.,
whether 0.7 56Ni production as in SN 1998bw is ratherM

_common or not. However, the present study of SN 1997ef
shows that the 56Ni mass and thus intrinsic maximum
brightness of SN 1997ef is smaller than in SN 1998bw by a
factor of 4È5 (see the next subsection). We certainly need
more examples for deÐning the luminosity function and the
actual distribution of masses of 56Ni produced in
supernovae/hypernovae.

5.4. Possible Evolutionary Scenarios
Here we classify possible evolutionary paths leading to

C]O star progenitors. In particular, we explore the paths
to the progenitors that have rapidly rotating cores with a
special emphasis because the explosion energy of hyper-
novae may be extracted from rapidly rotating black holes
(Blandford & Znajek 1977).

1. Case of a single star : If the star is as massive as Mms Z40 it could lose H and He envelopes in a strong stellarM
_

,
wind (e.g., Schaller et al. 1992). This would be a Wolf-Rayet
star.

2. Case of a close binary system: Suppose we have a
close binary system with a large mass ratio. In this case, the
mass transfer from star 1 to star 2 inevitably takes place in a
nonconservative way, and the system experiences a
common envelope phase in which star 2 is spiraling into the
envelope of star 1. If the spiral-in releases enough energy to
remove the common envelope, we are left with a bare He
star (star 1) and a main-sequence star (star 2), with a
reduced separation. If the orbital energy is too small to eject
the common envelope, the two stars merge to form a single
star (e.g., van den Heuvel 1994).

a) For the nonmerging case, possible channels from the
He stars to the C]O stars are as follows (Nomoto,
Iwamoto, & Suzuki 1995).

i) Small-mass He stars tend to have large radii, so that
they can Ðll their Roche lobes more easily and lose most of
their He envelope via Roche lobe overÑow.

ii) On the other hand, larger mass He stars have radii too
small to Ðll their Roche lobes. However, such stars have
large enough luminosities to drive strong winds to remove
most of the He layer (e.g., Woosley, Langer, & Weaver
1995). Such a mass-losing He star would corresponds to a
Wolf-Rayet star.
Thus, from the nonmerging scenario, we expect two di†er-
ent kinds of SNe Ic, fast and slow, depending on the mass of
the progenitor. SNe Ic from smaller mass progenitors
(channel i) show faster light-curve and spectral evolutions,
because the ejecta become more quickly transparent to both
gamma-ray and optical photons. The slow SNe Ic originate

from the Wolf-Rayet progenitors (channels ii and 1). The
presence of both slow and fast SNe Ib/Ic has been noted by
Clocchiatti & Wheeler (1997).

b) For the merging case, the merged star has a large
angular momentum, so that its collapsing core must be
rotating rapidly. It would lead to the formation of a rapidly
rotating black hole from which possibly a hyperenergetic jet
could emerge. If the merging process is slow enough to eject
H and He envelopes, the star would become a rapidly rotat-
ing C]O star. Such C]O stars are the candidates for the
progenitors of Type Ic hypernovae such as SNe 1997ef and
1998bw. If a signiÐcant amount of H-rich (or He) envelope
remains after merging, the rapidly rotating core would lead
to a hypernova of Type IIn possibly like SN 1997cy (or
Type Ib).

6. CONCLUSIONS

We have shown that the photospheric velocities and the
spectra of SN 1997ef are much better reproduced by the
hyperenergetic model CO100 than by the ordinary SN Ic
model CO60. The model parameters determined for CO100
are ergs, (which correspondsE

K
\ 8 ] 1051 MCO\ 10 M

_to the C]O core of a 30È35 star), and M(56Ni)\ 0.15M
_The compact star remnant of CO100 is as massive asM

_
.

thus possibly being a black hole. This highMremD 2.4 M
_

,
explosion energy would be extracted from the rapidly rotat-
ing black hole.

For SN 1997ef, M(56Ni), and are all slightlyMCO, E
Ksmaller than for SN 1998bw, but SN 1997ef can certainly be

regarded as a hypernova in terms of the kinetic energy of
explosion. Therefore, we suggest that SNe 1997ef, 1998ey,
and 1998bw form a new class of hyperenergetic Type Ic
supernovae, which we call hypernovae. They are distin-
guished by their large kinetic energies, 8È60 times larger
than in ordinary supernovae.

The smaller line velocities at advanced phases and the
Ñatter light curve tail of SN 1997ef than the models predict
may suggest the presence of a low-velocity, relatively dense
core, while its higher line velocities at early phases imply the
presence of a component of ejecta with yet higher velocity.
These are very difficult to be reconciled with any spherically
symmetric models, even with the high-energy spherical
model CO100. This discrepancy between models and the
observations, as well as the extensive mixing of 56Ni
required to explain the early rise of the light curve, seems to
indicate that the explosion of SN 1997ef was at least some-
what aspherical.
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