69 research outputs found

    Sudden and gradual responses of phytoplankton to global climate change: case studies from two large, shallow lakes (Balaton, Hungary and the Neusiedlersee Austria/Hungary)

    Get PDF
    This paper analyses two phytoplankton long-term datasets; both are from large, temperate shallow lakes. The main difference between them is that phytoplankton growth in Lake Balaton remained severely P-limited despite P-driven eutrophication during the last 30 years, whereas extremely high turbidity causes a permanent light limitation in Neusiedlersee and therefore an increase in P-loadings did not result in a similar increase in phytoplankton biomass. Neusiedlersee is a (slightly) saline inland lake. In Lake Balaton, the blue-green alga Cylindrospermopsis raciborskii blooms invariably if the July-august temperature deviates positively from a 30-year average by ca. 2 °C. A supposed global warming is predicted to cause a higher frequency (but not intensity!) of these blooms. Neusiedlersee is very shallow and therefore regulation techniques cannot prevent water levels sinking in successive dry years. Annual averages of phytoplankton seem to follow quite a regular, wave-like cyclicity. Such cycles can be recognised in the population records of the characteristic species. Similar changes were seen in changes of water level, conductivity, inorganic-P, inorganic N-forms and nutrient ratios. How phytoplankton species can follow a climatic cycle that covers 200 to 500 generations has not yet become clear. Because of reasons discussed in the paper, neither of the two cases can be generalised; each is quite individual

    Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes

    Get PDF
    Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.

    How length of light exposure shapes the development of riverine algal biomass in temperate rivers?

    Get PDF
    The impact of cumulative daily solar radiation (CDSR) on the biomass of river phytoplankton (Chl-a) in the growing season was studied using a large dataset of rivers in the Carpathian Basin. The amount of solar radiation was cumulated over the range of 1–60 days. The CDSR–Chl-a relationship could be described by linear regression and appeared to be significant for almost all watercourses with the exception of rivers with short water residence time. To determine the most relevant time period of CDSR impacting phytoplankton biomass, the slopes of regressions were plotted against the accumulating number of days of light exposure (1–60). Two characteristic shapes were obtained: unimodal for rhithral rivers with hard substrate and steady increase for lowland potamal rivers with fine substrate. In both cases, there is an increasing tendency in the slope values with water residence time (WRT). It was demonstrated that CDSR has a pronounced impact on river phytoplankton biomass even in cases when WRT was shorter than the cumulated solar radiation period. These results indicate that development of phytoplankton within the river channel is a complex process in which meroplankton dynamics may have significant impacts. Our results have two implications: First, CDSR cannot be neglected in predictive modelling of riverine phytoplankton biomass. Second, climate models forecast increased drought with subsequently increased CDSR in several regions globally, which may trigger a rise in phytoplankton biomass in light-limited rivers with high nutrient concentrations
    corecore