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Abstract 

The impact of cumulative daily solar radiation (CDSR) on the biomass of river phytoplankton 

(Chl-a) in the growing season was studied using a large dataset of rivers in the Carpathian 

Basin. The amount of solar radiation was cumulated over the range of 1-60 days. The CDSR– 

Chl-a relationship could be described by linear regression and appeared to be significant for 

almost all watercourses with the exception of rivers with short water residence time. To 

determine the most relevant time period of CDRS impacting phytoplankton biomass, the 

slopes of regressions were plotted against the accumulating number of days of light exposure 

(1-60). Two characteristic shapes were obtained: unimodal for rivers with hard substrate and 

steady increase for lowland rivers with fine substrate. In both cases, there is an increasing 

tendency in the slope values with water residence time (WRT). It was demonstrated that 

CDSR has a pronounced impact on river phytoplankton biomass even in cases when WRT 

was shorter than the cumulated solar radiation period. These results indicate that development 

of phytoplankton within the river channel is a complex process in which meroplankton 

dynamics may have significant impacts. Our results have two implications: First, CDSR 

cannot be neglected in predictive modelling of riverine phytoplankton biomass. Second, 

climate models forecast increased drought with subsequently increased CDSR in several 

regions globally, which may trigger a rise in phytoplankton biomass in light-limited rivers 

with high nutrient concentrations. 

  

Keywords: cumulative daily solar radiation, phytoplankton, residence time 

Introduction 

Phytoplankton produces the majority of organic matter in most of the aquatic ecosystems. 

This group represents the first level of the pelagic food chain not only in the oceans and 
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inland standing waters, but also in the middle and lower sections of large rivers (Descy and 

Gosselain, 1994; Schmidt, 1994; Stanković et al., 2012). A significant amount of knowledge 

has been accumulated with respect to phytoplankton dynamics and ecology in lacustrine 

environments. Several models were published on the phytoplankton succession (Sommer et 

al., 1986, Sommer, 1989), on the development of phytoplankton biomass (reviewed in 

Phillips et al., 2008), or on mechanisms that drive phytoplankton diversity (Hutchinson, 1961; 

Roy and Chattopadhyay, 2007). Much less information is available about the ecology of 

phytoplankton in riverine ecosystems. The drastic hydromorphological alterations in the 

floodplains, and the fact that rivers became the main recipients of wastewaters hindered the 

study of natural watercourses. However, there are some general features of the riverine 

phytoplankton, which have been revealed for several rivers in the temperate zone.  

Contrary to lakes where nitrogen and phosphorus are considered to be the primary limiting 

factors for algal growth, nutrients are available in high excess in most rivers and their 

concentrations hardly limit algal development (Reynolds and Descy, 1996). In rivers, an 

important limiting factor is water residence time (WRT) (Soballe and Kimmel, 1987). 

Depending on the phytoplankton growth-loss balance in the water bodies, WRT can affect 

either positively or negatively the growth of planktic assemblages (Lucas et al., 2009). In 

upper river segments, where WRT is not sufficient for the development of phytoplankton 

(Lucas et al., 2009), planktic assemblages consist primarily of suspended benthic elements 

(mostly pennate diatoms) entrained from various surfaces of the river-bed (Abonyi et al., 

2012; Bolgovics et al., 2015, 2017; Várbíró et. al., 2007). This so-called rhithroplankton is 

continuously enriched with euplanktonic species further downstream. As a result, the middle 

and lower sections of large rivers are characterised by high-biomass of euplanktonic 

phytoplankton assemblages (Várbíró et al., 2007). High level of nutrients and long WRT, 
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however, provide necessary but not sufficient conditions for the development of 

phytoplankton in watercourses (Lucas et al., 2009).  

Rivers are highly variable systems, where the environmental characteristics are subjected to 

extreme fluctuations (Bukaveckas et al., 2011). From these environmental features, light 

conditions are among the most important regulatory factors of phytoplankton in rivers 

(Bukaveckas et al., 2011; Ochs et al., 2013). Depending on the concentration of suspended 

solids, the light perceived by the phytoplankton may range from full sunlight to complete 

darkness, and the rate of primary production can be limited by the available 

Photosynthetically Active Radiation (PAR). The ratio between euphotic (Zeu) and mixing 

depth (Zmix) determines the amount of irradiance encountered by a phytoplankton cell 

(Talling, 1957, 1971). Critical values of Zeu/Zmix ratio vary between 0.2 and 0.35 (Reynolds, 

1984; Cole et al., 1992). Below these values the respiratory carbon use of phytoplankton 

exceeds the rate of photosynthetic carbon supply. Despite the presence of viable 

phytoplankton assemblages in water column, net primary production may decrease if 

phytoplankters cannot spend time enough in the in the euphotic zone (Ochs et al., 2013). 

Thus, phytoplankton might eventually disappear from the water column.  

While a number of field and laboratory studies focused on the relationship between the 

underwater light climate and phytoplankton growth (Ochs et al., 2013), much less attention 

has been paid to the role of light intensity and duration to the water surface. The upper surface 

of a continuous sheet of deep clouds can reflect ~70% of the total solar radiation and can 

absorb an additional ~20% (Kirk, 2011). Thus, it is possible that due to the weather conditions 

nearly ten times differences characterize the daily incident solar irradiance. This should have 

a pronounced effect on the production and biomass of phytoplankton. Long-term monitoring 

of surface waters and meteorological stations provide a huge amount of data on chlorophyll-a 
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(Chl-a), and on the number of sunny hours. Coupling these databases provides a potentially 

powerful method to study the relationship between light exposure and phytoplankton biomass. 

The aim of the present study was to assess the role of sunny hours (as a proxy of solar 

irradiance) in the development of phytoplankton biomass (Chl-a) in temperate rivers. 

We hypothesised (i) that solar irradiance has a significant effect on river phytoplankton, and 

(ii) the river characteristics has a pronounced influence on the relationship between 

phytoplankton biomass and light exposure. 

Materials and methods 

Studied rivers 

Growing season (May-September) sestonic Chl-a data of rivers in the Carpathian basin for the 

period of 1992-2010 were used for the analyses. Data were provided by the Hungarian Water 

Quality Monitoring Database. The database contained Chl-a data of 52 rivers from 103 

sampling sites (Fig 1). Before the analyses, several screening steps were performed. First, the 

small lowland macrophyte dominated streams were excluded. In the second step, all rivers, 

where sporadic extreme high Chl-a values indicated because of the obvious impact of in-

stream or off-river reservoirs, were ruled out. Finally, data were screened to exclude those 

sites, where short water residence time (WRT <5 days) was coupled with high mean 

phytoplankton biomass (Chl-a > 30 µgl
-1

) which indicated again an impact of off-river 

reservoirs or ponds. Theoretical water residence time was calculated as a function of drainage 

area (Ad, km
2
) and water discharge (Q, m

3
 s

-1
) using the equation WRT = 0.08×Ad 

0.6 
× Q

-0.1 

(Soballe and Kimmel, 1987) for each sampling sites and for on each sampling event. Thus, 

the final dataset consisted of 39 rivers and 88 sites with 13 044 sampling events. The relevant 

hydrological and morphological parameters of the rivers are shown in Electronic 
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Supplementary Material(ESM) Table 1. Chl-a measurements followed the hot-ethanol 

extraction method (MSZ ISO 10260:1993). 

 

Light exposure 

As a surrogate measure of light exposure, the sum of daily solar radiation (DSR) values was 

used (May to September). The dataset included sunshine hours for Budapest and was 

provided by the Hungarian Meteorological Service. The regional differences of the global 

radiation in Hungary are smaller than 10% (Szász, 1997). This value is much smaller than the 

value of the possible daily variation and therefore this simplification hardly affects the results 

to be obtained.  

DSR was derived from sunshine hours in each day, applying Angstrom’s formula (1924) with 

coefficients applicable to Hungary (Szász, 1997): 

DSR = DSR 0 (0.28 + 0.72
𝑆

𝑆𝑚
)  

where 

DSR: daily solar radiation (MJ m
-2

) 

DSR 0: Monthly theoretically possible global radiation on horizontal surface in Hungary (MJ 

m
-2

)  

S: measured daily values of the bright sunshine hours for the given day 

Sm: maximum possible sunshine hours for the given date (monthly mean values were applied) 

The light exposure matrix contained 60 cumulative DSR (CDSR) values for one to sixty days 

period prior to each sampling date.  

 

Data analysis 

Log transformed Chl-a values were plotted against the log CDSR values cumulated for each 

of the exposure periods and at each sample site. The period ranged from one day to sixty days, 
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the building of the model matrix is described in Table 1. General linear model was used with 

the following equation to assess the effect of cumulated DSR values on Chl-a.  

log (Chl − 𝑎)  = ∝  + βlog (CDSR 𝑖) + 𝑒 

where  

Chl-a : Chlorophyll-a content in µgL
-1

 

CDSR i: the cumulative energy on the i
th

 day  

β: slope 

α: intercept 

e: residuals 

The coefficients of determination (R2), the slope (β) and level of significance (p-we set our 

significance level at 0.05) were used to determine the overall fit of the models. 

 Since sixty models were constructed for each sampling site, altogether 5280 (60× 88) model 

results were evaluated. In all cases, the R
2
 values were plotted against the periods’ lengths. 

The maxima of these curves indicate the length of light exposure having the highest explained 

variance of phytoplankton biomass.  

Data analyses were performed using R program package (R Development Core Team, 2016). 

 

Results 

Phytoplankton biomass varied considerably at each sample site (ESM Table 1). Differences 

were moderate in small streams, but exceeded two orders of magnitude in large lowland 

rivers. DSR values varied between 1.6 and 32 MJ m-2 day-1. CDSR values showed 

approximately five times differences across the whole range of light exposure days Fig 2.  
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In most rivers, Chl-a / CDSR relationship was significant and could be described by linear 

regression model. Exceptions were those few watercourses where the WRT was smaller than 

6 days. In the majority of cases, the significant relationship was characteristic only for a 

certain range of the 60-day light exposure period. However, the fact that the slope of the 

regression line is significantly different from zero does not necessarily mean that 

phytoplankton biomass considerably determined by the cumulated light exposure. Therefore, 

the slopes of regressions were plotted against the days of light exposure – (DLE) (Fig 3). 

Based on the shapes of the curves two distinct patterns could be distinguished; monotonously 

increasing and hump shaped (Fig 3 a-d). In case of lower sections of the rivers  (Fig 3 b and 

c), the observed steady increase in slope values indicates that pronounced increment of 

phytoplankton biomass needs longer light exposure. In contrast, hump-shaped relationship 

(Fig 3 d) occurred in the upper sections of the rivers, which implies that significant increase in 

phytoplankton biomass could be expected at shorter light exposure. The slope of the 

regressions i.e. dependence of phytoplankton biomass on the solar radiation was also 

influenced by water residence time (Fig 4 a-d).  

In river Danube, the peak of the hump-shaped curve shifted towards the longer light exposure 

range (30-40 days), slightly flattened in the lower river sections (higher values of WRT) and 

had a maximum slope value of β = 1.8 (Fig 4 a). 

In Tisza river, the steady increase of slope values with DLE could also be observed, but it 

showed a bimodal character along the WRT with peaks reaching the slope value of β~3 (Fig 

4b). 

The highest slope values characterised the lowland rivers with fine substrate. In this river 

group the values showed steady increase both with the DLE and WRT and attained the β = 5 

values (Fig 4c). 
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Increment of phytoplankton biomass in rhitral rivers with coarse substrate was less 

pronounced. The slope values showed unimodal relationship both with the light exposure and 

WRT. Maximum slope values were only ~1.5 and fell in the range of 10-30 DLE and 12-20 

days of WRT (Fig 4d). 

The explained variances of the applied linear regression models were closely related to the 

slope values (Fig 5a-d). Highest R
2
 values characterised the lowland streams with fine 

substrate. In this river group the explained variance attained the 0.35 value. The river Tisza 

and the lower sections of Danube also belong to this category. Although the explained 

variances of the models were smaller in case of rivers with coarse substrates, these values 

were reasonably high (R
2
= 0.2) for several sites.  

 

Discussion 

Solar radiation appeared to be a strong predictor of phytoplankton biomass in most rivers. 

However, depending on the type of water body solar radiation accounted for about 10–95% of 

the heat input into surface waters (Birge, 1916; Platts, 1983). Water temperature has a 

profound influence on the photosynthetic activity of algae and studying the processes on a 

longer time scale (i.e. from January to July in temperate region) it could be very difficult to 

distinguish the impacts of temperature on the phytoplankton biomass from that of the solar 

radiation. The five-month time frame applied in this study covered the warmest period of the 

years when water temperature is relatively constant (range of changes ~5-7 
○
C at site level), 

while daily variation of DSR values occasionally reached twenty-fold differences (1.6 -32 MJ 

m
-2

 day
-1

) and variation of DSR values cumulated for the maximal 60-day long period still 

attained a five-fold difference.  

In some several watercourses no significant relationships between DSR and Chl-a was found. 

In these cases, however, short water residence time (< 6 days) explained the non-significant 
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relationships. Interestingly, for several rivers we observed that the highest slope and R
2
 values 

fell in a range of the light exposure gradient (DLE) where the numbers of light exposure days 

exceeded the WRT of the given watercourse. This contradiction in these rivers can be 

explained by considering the composition and recruitment of phytoplankton in rhitral rivers. 

Phytoplankton of rhitral rivers (rivers with low WRT values and coarse substrates) consists 

primarily on tychoplanktonic elements, i.e. benthic taxa that entrained to the plankton after 

detached from the substrates (Bolgovics et al., 2015, 2017). Thus, phytoplankton of rhithral 

rivers strongly depends on the composition and biomass of the benthic algae living in the 

various habitats of the river bed and the current velocity has to be sufficient to keep benthic 

organisms in suspension. Since the development of mature phytobenthos needs longer time, 

typically more than four weeks (Lengyel et al., 2015, Tapolczai et al., 2016), it is not 

surprising that the number of light exposure days belonging to the highest slope values is 

higher than WRT of the given rhithral river.  

In lowland rivers where both the slopes and R
2
 values showed steady increase with the days 

of DSR, the number of days belonging to the highest slope and R
2
 values (60 days) also 

exceeded the WRT of the rivers (~ 16-23 days). In these rivers, high-biomass/low-diversity 

phytoplankton prevails (Borics et al., 2014) and is dominated by medium-sized centric 

diatoms like Cyclotella meneghiniana Kützing (Várbíró et al., 2007). These taxa are 

considered as euplanktonic elements, i.e. species that live exclusively in the pelagial. 

However, Istvánovics and Honti (2011) demonstrated that in slow-flowing rivers these 

diatoms with high sedimentation rates settle to the bottom and can have a prolonged benthic 

residence. This practically means that these taxa can exhibit meroplanctonic life histories in 

this kind of rivers. Due to sufficiently strong hydraulic forces they can entrain into the 

suspension again. This so called benthic retention hypothesis argues that residence time of 
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large-celled diatoms exceeds that of the advecting, truly planktic algae. This explicitly 

explains the “days of CDSR > WRT” controversy. 

Istvánovics and Honti (2011) described this meroplankton dynamics for the River Szamos 

(Hungary), which was also part of our study and had the highest slope and R
2
 values. This 

meroplankton dynamic enables the development of high phytoplankton biomass (maximum 

value of Chl-a in the River Szamos was 518 µgl
-1

 in our database), which, considering an 

approximately 1m mean depth for the river in the summer period, is very close to the 

theoretical maximum of the depth integrated Chl-a content of surface waters (600 mg m
-2

) 

estimated by Reynolds (2006) and measured occasionally in hypereutrophic ponds (Borics et 

al., 2000). 

The impact of the two large tributaries (Szamos and Maros) on the phytoplankton of the Tisza 

can be clearly seen in Fig 4b, whereas the bimodal character of the slope values were 

unequivocally due to these large inflows.  

The curves of slope values showed unimodal distribution in case of the Danube with a shifting 

peak towards the longer light exposure range. This pattern is consistent with the typological 

differences that can be observed along the 417 km Hungarian section of the river. In the upper 

river segment, the channel is composed by coarse sediment (cobbles and gravel) while the 

lower river segment is covered with is sandy. Parallel with this shift in river type, biological 

elements including macroinvertebrates (Graf et al., 2008), fish (Erős et al., 2016) and planktic 

algae (Dokulil and Donabaum, 2014) also showed compositional and/or quantitative changes. 

The position of the peaks in the upper river segment of the Danube fall between 7-12 days 

(Fig 3a), which is surprisingly shorter than the range that characterised the small streams and 

rhithral rivers (12-25 days) (Fig 3d). Sedimentation of algae in the reservoir might have a 

pronounced influence on the composition and biomass of the phytoplankton, which modifies 

its response to the CDSR. Profiles of the curves belonging to the lower sections of Danube 
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became similar to that of the lowland potamal rivers.(Fig 4a,c). However, declines of the 

curves in the CDSR > 42 days range indicates that the meroplankton dynamics, which must 

be responsible for the high slope values in lowland rivers with fine sediment even in case of 

long light exposure (Fig 4c) does not play significant role in the River Danube. Although 

meroplankton dynamics occurs in the shallow part of the Danube’s riverbed but its importance 

is much smaller compared to the overwhelming dominance of potamoplakton. 

 

Modelling of river phytoplankton biomass is a challenging task. Nutrients, suspended 

particles, turbidity, residence time and catchment area, are the most frequently used variables 

in empirical models to predict biomass of algae or its proxy, the sestonic Chl-a (Sterner et al., 

1996). Fluctuation of discharge, the impacts of impoundments and the various river influents 

result in low explanatory power of the models. What we have learned from the majority of 

studies dealing with eutrophication that nutrients are essential for algal growth and the 

nutrient–Chl-a relationship is nonlinear (Phillips et al., 2008). This relationship can be highly 

significant not only for lakes but also for rivers (Van Nieuwenhuyse and Jones, 1996). 

Nevertheless, as it was shown by the aforementioned authors who studied the relationship in 

the 5-1000 µgl
-1

 TP range, that the strong relationship can only be demonstrated if the TP 

gradient is large. In the eutrophic range where TP highly exceeds 100 µgl
-1

, the TP– Chl-a 

relationship is almost asymptotic both for lakes (Borics et al., 2014; Phillips et al., 2008) and 

rivers (Van Nieuwenhuyse and Jones, 1996), which makes the adequate modelling of 

phytoplankton growth really difficult. A number of studies emphasised the role of light in the 

growth of river phytoplankton and proposed to use it in predictive models (Descy et al., 1987; 

Descy and Gosselain, 1994; Reynolds et al., 2004). There are many ways of using solar 

radiation in the models. The fact that occasionally negative relationship was found between 

solar radiation and river phytoplankton biomass (Whitehead et al., 1997) highlights the need 
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of more thorough examination of this issue. The importance of our results is that they are the 

first to show that CDSR might have pronounced influence on the riverine phytoplankton 

biomass, and this influence strongly depends on the type of the watercourse and the length of 

light exposure. It could be important to mention that even if the ratio Zeu/Zmix is low, 

phytoplankton might not disappear from the water, and might even accumulate, if there are 

external sources of phytoplankton to the system (eg. supplements from wetlands or lakes). 

In cases when the CDSR – Chl-a relationship was significant, the explained variance of the 

regression models varied between 0.03 and 0.35. Highest values were obtained for the large 

highly eutrophic lowland rivers with fine sediments. Since phytoplankton is constrained by 

several regulatory factors among which many are difficult to measure, or not measured 

routinely at all, solar radiation could be the most relevant explanatory variable that cannot be 

neglected in future predictive modelling of riverine phytoplankton biomass. 

The other important message of our study is that the future changes in river phytoplankton 

biomass can be affected by global warming. One of the important consequences of the global 

warming for the mid-latitude continents is the decline in the average summer rainfall (Rowell 

and Jones, 2006; Rowell, 2009). This potentially means increased aridity, lower cloudiness 

(Dai, 2011) and higher air temperature (Desortová and Punčochář, 2011). These altered 

conditions therefore are expected to contribute to the development of high phytoplankton 

biomass in rivers and increase the risk of critical water quality changes.  

 

Conclusions 

Our results demonstrate that cumulative daily solar radiation (CDSR) is a crucial factor 

affecting the river phytoplankton biomass. It was also shown that different river types respond 

in a diverse way to solar radiation, both in terms of the increase rate (slope of linear 

regression models) and in terms of the variance explained. Because of the strength of the 
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relationship between CDSR and Chl-a, irradiance cannot be neglected in empirical models 

predicting phytoplankton biomass especially in light limited eutrophic rivers. Global warming 

(GW) alters the Earth’s hydrological processes in various ways. Consequences of the 

increased river runoff for catchment phosphorus are well documented in the literature. 

Through the increased nutrient load, global warming acts on the riverine phytoplankton 

indirectly. However, our study demonstrated that GW may have a more proximate effect on 

river phytoplankton biomass. The increased solar radiation expected in many regions of the 

Earth has a direct, pronounced impact on river phytoplankton biomass. Therefore, it has to be 

considered in future predictive modelling of primary producers in riverine ecosystems, with 

implications for the water quality management. 
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Legends for tables and figures 

 

Table 1. Building of the site level matrix used for studying the cumulative daily solar 

radiation (CDSR) – Chl-a relationships 

Electronic Supplementary Material Table 1. List of sampling sites and descriptive statistics of 

characteristic physical and chemical parameters 
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Fig. 1. Distribution of the sampling sites in the Carpathian basin. Larger black dots refer to the 

higher maximum slope values.

 

Fig. 2. The range of cumulative daily solar radiation (CDSR in MJ m
-2

) in the range of time 

periods studied (1-60 days). The grey areas represent the minimum to maximum values 

occurred in the database for a given day. 
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Fig. 3. Line plots illustrating the relationship between the estimated linear slopes for Chl-a 

regressed against CDSR and number of days contributing to the CDSR: (a) Danube, (b) 

Tisza, (c) Potamal, and (d) Rhitral. The lines refer to different sampling sites. 

 

Fig. 4. The scatterplot between R
2
 and slope values in the different river types from Chl-a 

regressed against CDSR for each cumulative day. (a) Danube, (b) Tisza, (c) Potamal, 

and (d) Rithral. Dots refer individual models, red dots indicates non-significant, while 

green ones indicates significant models at p<0.05. 
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Fig. 5. Three-dimensional plots of the slope for Chl-a regressed against CDSR in the light of 

the cumulative time period studied and the water residence time (WRT) in the different 

river types: (a) Danube, (b) Tisza, (c) Potamal, and (d) Rhitral  
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Table 1.  

 

   1-60th Model 

dependent variable  

(Y axis for Plot 1-60th) 

  1st) Model 

predictor 

variable 

 (X axis for Plot 1) 

2nd Model 

predictor 

variable 

 (X axis for Plot 2) 

―> 60th Model 

predictor variable 

(X axis for Plot 60) 

Code of 

measurements 

from 1 to  

Sampling site 

code 

N=91 

Chl-a (µL-1) Date of 

sampling 

DSR 1 day earlier 

(MJ m-2) 

Sum of DSR 1 +2 

days earlier (MJ 

m-2) 

―> Sum of DSR 

1+2+3 ……. +60 

days earlier  (MJ 
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N=13 044 m-2) 

1 Site A 17 05.07.2001 27 50 ―> 1115 

2 Site A 23 06.08.2001 7 22 ―> 1225 

3 Site A 60 07.09.2001 18 33 ―> 890 

•  • • • • ―> • 

•  • • • • ―> • 

•  • • • • ―> • 

N Site N 63 09.09.2007 21 43 ―> 1370 
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