32 research outputs found

    Repeatability analysis of two methods for height measurements in the micrometer range

    No full text
    A precision study of two height measuring methods is carried out. The first method is based on a White Light Interferometer (WLI) and the second on a Co-ordinate Measuring Machine (CMM) equipped with an optical probe. The height measurements considered are in the range [150; 250] μm. Point and interval estimates of repeatability are reported in the paper. This study presents experimental evidence that, under repeatability conditions, the precision of the WLI method is about five times higher than that of the optical CMM method. Furthermore, the precision of WLI is constant over the investigated height range whereas a dependency of the CMM precision on the nominal dimensions is identified. For both methods a linear relationship is detected between the random error and the sequence in which the measurements are taken

    Clinical Study of the Influence of Ambient Light Scanning Conditions on the Accuracy (Trueness and Precision) of an Intraoral Scanner

    Full text link
    PURPOSE To quantify the impact of ambient lighting conditions on the accuracy (trueness and precision) of an intraoral scanner (IOS) when maxillary complete-arch and maxillary right quadrant digital scans were performed in a patient. MATERIAL AND METHODS One complete dentate patient was selected. A complete maxillary arch vinyl polysiloxane impression was obtained and poured using Type IV dental stone. The working cast was digitized using a laboratory scanner (E4 Dental Scanner; 3Shape) and the reference standard tessellation language (STL file) was obtained. Two groups were created based on the extension of the maxillary digital scans performed namely complete-arch (CA group) and right quadrant (RQ) groups. The CA and RQ digital scans of the patient were performed using an IOS (TRIOS 3; 3Shape) with 4 lighting conditions chair light (CL), 10 000 lux, room light (RL), 1003 lux, natural light (NL), 500 lux, and no light (ZL), 0 lux. Ten digital scans per group at each ambient light settings (CL, RL, NL, and ZL) were consecutively obtained (n = 10). The STLR_{R} file was used to analyze the discrepancy between the digitized working cast and digital scans using MeshLab software. Kruskal-Wallis, one-way ANOVA, and pair-wise comparison were used to analyze the data. RESULTS Significant difference in the trueness and precision values were found across different lighting conditions where RL condition obtained the lowest absolute error compared with the other lighting conditions tested followed by CL, NL, and ZL. On the CA group, RL condition also obtained the best accuracy values, CL and NL conditions performed closely and under ZL condition the mean error presented the highest values. On the RQ group, CL condition presented the lowest absolute error when compared with the other lighting conditions evaluated. A pair-wise multicomparison showed no significant difference between NL and ZL conditions. In all groups, the standard deviation was higher than the mean errors from the control mesh, indicating that the relative precision was low. CONCLUSIONS Light conditions significantly influenced on the scanning accuracy of the IOS evaluated. RL condition obtained the lowest absolute error value of the digital scans performed. The extension of the digital scan was a scanning accuracy influencing factor. The higher the extension of the digital scan performed, the lower the accuracy values obtained. Furthermore, ambient light scanning conditions influenced differently depending on the extension of the digital scans made
    corecore