58 research outputs found

    Recycling of plastic wastes generated from COVID-19: A comprehensive illustration of type and properties of plastics with remedial options

    No full text
    Plastic has contributed enormously to the healthcare sector and towards public health safety during the COVID-19 pandemic. With the frequent usage of plastic-based personal protective equipment (PPEs) (including face masks, gloves, protective body suits, aprons, gowns, face shields, surgical masks, and goggles), by frontline health workers, there has been a tremendous increase in their manufacture and distribution. Different types of plastic polymers are used in the manufacture of this equipment, depending upon their usage. However, since a majority of these plastics are still single-use plastics (SUP), they are not at all eco-friendly and end up generating large quantities of plastic waste. The overview presents the various available and practiced methods in vogue for disposal cum treatment of these highly contaminated plastic wastes. Among the current methods of plastic waste disposal, incineration and land filling are the most common ones, but both these methods have their negative impacts on the environment. Alongside, numerous methods that can be used to sterilize them before any treatment have been discussed. There are several new sorting technologies, to help produce purer polymers that can be made to undergo thermal or chemical treatments. Microbial degradation is one such novel method that is under the spotlight currently and being studied extensively, because of its ecological advantages, cost-effectiveness, ease of use, and maintenance. In addition to the deliberations on the methods, strategies have been enumerated for combination of different methods, vis-a-vis studying the life cycle assessment towards a more circular economy in handling this menace to protect mankind

    Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling

    Get PDF
    BACKGROUND: The human gut microbiota has been implicated in most aspects of health and disease; however, most of the bacteria in this community are considered unculturable, so studies have relied on molecular-based methods. These methods generally do not permit the isolation of organisms, which is required to fully explore the functional roles of bacteria for definitive association with host phenotypes. Using a combination of culture and 16S rRNA gene sequencing, referred to as culture-enriched molecular profiling, we show that the majority of the bacteria identified by 16S sequencing of the human gut microbiota can be cultured. METHODS: Five fresh, anaerobic fecal samples were cultured using 33 media and incubation of plates anaerobically and aerobically resulted in 66 culture conditions for culture-enriched molecular profiling. The cultivable portion of the fecal microbiota was determined by comparing the operational taxonomic units (OTUs) recovered by 16S sequencing of the culture plates to OTUs from culture-independent sequencing of the fecal sample. Targeted isolation of Lachnospiraceae strains using conditions defined by culture-enriched molecular profiling was carried out on two fresh stool samples. RESULTS: We show that culture-enriched molecular profiling, utilizing 66 culture conditions combined with 16S rRNA gene sequencing, allowed for the culturing of an average of 95 % of the OTUs present at greater than 0.1 % abundance in fecal samples. Uncultured OTUs were low abundance in stool. Importantly, comparing culture-enrichment to culture-independent sequencing revealed that the majority of OTUs were detected only by culture, highlighting the advantage of culture for studying the diversity of the gut microbiota. Applying culture-enriched molecular profiling to target Lachnospiraceae strains resulted in the recovery of 79 isolates, 12 of which are on the Human Microbiome Project’s “Most Wanted” list. CONCLUSIONS: We show that, through culture-enriched molecular profiling, the majority of the bacteria in the human gut microbiota can be cultured and this method revealed greater bacterial diversity compared to culture-independent sequencing. Additionally, this method could be applied for the targeted recovery of a specific bacterial group. This approach allows for the isolation of bacteria of interest from the gut microbiota, providing new opportunities to explore mechanisms of microbiota–host interactions and the diversity of the human microbiota. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0327-7) contains supplementary material, which is available to authorized users

    Determination of Heavy Metal Levels in Edible Salt

    No full text
    corecore