1,418 research outputs found

    Antifungal activity of bacterial strains from the rhizosphere of Stachytarpheta crassifolia

    Get PDF
    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a bioautography technique. The results showed that bacterial strains, Alcaligenes faecalis MRbS12 and Bacillus cereus MRbS26, had compounds with antifungal bioactivity. The largest inhibition zones for both compounds were located on spots with Rf values below 0.500, indicating that the molecules possibly had polar characteristics. These results suggested that microorganisms found in the environment could have bioprospecting potential.Key words: Biomolecules, bioautoghaphy, antifungal activity, Alcaligenes faecalis, Bacillus cereus, Candida albicans

    Immunoprofiling of oral squamous cell carcinomas reveals high p63 and survivin expression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106715/1/odi12136.pd

    Involvement of Hsp90 and cyclophilins in intoxication by AIP56, a metalloprotease toxin from Photobacterium damselae subsp. piscicida

    Get PDF
    AIP56 (apoptosis inducing protein of 56 kDa) is a key virulence factor secreted by virulent strains of Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes septicemic infections in several warm water marine fish species. AIP56 is systemically disseminated during infection and induces massive apoptosis of host macrophages and neutrophils, playing a decisive role in the disease outcome. AIP56 is a single-chain AB-type toxin, being composed by a metalloprotease A domain located at the N-terminal region connected to a C-terminal B domain, required for internalization of the toxin into susceptible cells. After binding to a still unidentified surface receptor, AIP56 is internalised through clathrin-mediated endocytosis, reaches early endosomes and translocates into the cytosol through a mechanism requiring endosomal acidification and involving low pH-induced unfolding of the toxin. At the cytosol, the catalytic domain of AIP56 cleaves NF-¿B p65, leading to the apoptotic death of the intoxicated cells. It has been reported that host cytosolic factors, including host cell chaperones such as heat shock protein 90 (Hsp90) and peptidyl-prolyl cis/trans isomerases (PPIases), namely cyclophilin A/D (Cyp) and FK506-binding proteins (FKBP) are involved in the uptake of several bacterial AB toxins with ADP-ribosylating activity, but are dispensable for the uptake of other AB toxins with different enzymatic activities, such as Bacillus anthracis lethal toxin (a metalloprotease) or the large glycosylating toxins A and B of Clostridium difficile. Based on these findings, it has been proposed that the requirement for Hsp90/PPIases is a common and specific characteristic of ADP-ribosylating toxins. In the present work, we demonstrate that Hsp90 and the PPIases cyclophilin A/D are required for efficient intoxication by the metalloprotease toxin AIP56. We further show that those host cell factors interact with AIP56 in vitro and that the interactions increase when AIP56 is unfolded. The interaction with Hsp90 was also demonstrated in intact cells, at 30 min post-treatment with AIP56, suggesting that it occurs during or shortly after translocation of the toxin from endosomes into the cytosol. Based on these findings, we propose that the participation of Hsp90 and Cyp in bacterial toxin entry may be more disseminated than initially expected, and may include toxins with different catalytic activities.This work was financed by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Program for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project PTDC/BIA-MIC/2007/2014 (POCI-01-0145-FEDER-016608). Ana do Vale was supported by the FCT fellowship SFRH/BPD/95777/2013. We thank Steve Leppla (Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA) for providing PA and Alexander E. Lang (Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany) for providing His-TccC3hvr. We are grateful to Paula Sampaio for assistance in the fluorescence microscopy and acknowledge the support of the ALM i3S Scientific Platform, member of the PPBI (PPBI-POCI-01-0145-FEDER-022122) and to André Maia of the BioSciences Screening i3S Scientific Platform for assistance in image acquisition with IN Cell analyzer. We also acknowledge the support of the Biochemical and Biophysical Technologies i3S Scientific Platform in protein quantification and circular dichroism

    Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents

    Get PDF
    Maleimides remain the reagents of choice for the preparation of therapeutic and imaging protein conjugates despite the known instability of the resulting products that undergo thiol-exchange reactions in vivo\textit{in vivo}. Here we present the rational design of carbonylacrylic reagents for chemoselective cysteine bioconjugation. These reagents undergo rapid thiol Michael-addition under biocompatible conditions in stoichiometric amounts. When using carbonylacrylic reagents equipped with PEG or fluorophore moieties, this method enables access to protein and antibody conjugates precisely modified at pre-determined sites. Importantly, the conjugates formed are resistant to degradation in plasma and are biologically functional, as demonstrated by the selective imaging and detection of apoptotic and HER2+ cells, respectively. The straightforward preparation, stoichiometric use and exquisite cysteine selectivity of the carbonylacrylic reagents combined with the stability of the products and the availability of biologically relevant cysteine-tagged proteins make this method suitable for the routine preparation of chemically defined conjugates for in vivo\textit{in vivo} applications.FAPESP (Grant IDs: 2012/22274-2; BEPE 2015/07509-1, 2013/25504-1), Xunta de Galicia, FCT Portugal (FCT Investigator, SFRH/BPD/103172/2014 Postdoctoral fellowship, SFRH/BD/111556/2015 PhD Studentship), European Union (Marie-Sklodowska Curie ITN Protein Conjugates), Engineering and Physical Sciences Research Council, MECD (‘Salvador Madariaga’ mobility grant PRX15/00638), MINECO (CTQ2015-70524-R, RYC-2013-14706 ), Royal Society, European Research Council Starting Grant (TagIt

    Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56

    Get PDF
    Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation. © 2023, The Author(s).This work was supported by National funds through FCT under the project UIDB/04293/2020 and by FEDER funds through Programa Operacional Factores de Competitividade – COMPETE and by national funds through FCT – Fundação para a Ciência e a Tecnologia under the project PTDC/BIA-MIC/29910/2017 to N.M.S.S. A.d.V. was funded by Portuguese national funds through the FCT and, when eligible, by COMPETE 2020 FEDER funds, under the Scientific Employment Stimulus–Individual Call 2021.02251.CEECIND/CP1663/CT0016. We acknowledge access to the HTX crystallization facility (Proposal ID: BIOSTRUCTX_8167) and SOLEIL, ESRF and ALBA synchrotrons for provision of measurement time and thank their staff for help with data collection. The authors acknowledge the support of i3S Scientific Platforms (https://www.i3s.up.pt/scientific-platforms.php) Advanced Light Microscopy, member of the national infrastructure PPBI-Portuguese Platform of BioImaging (supported by POCI-01-0145-FEDER-022122), Animal Facility, Biochemical and Biophysical Technologies and X-ray Crystallography. A special thanks to Dr. Marc Graille and Dr. João Morais Cabral for constructive discussions in structural biology and Dr. Dimitri Panagiotis Papatheodorou for providing plasmid p327

    Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction

    Get PDF
    PURPOSE: We aim to characterize the pathways required for autofluorescent granule (AFG) formation by RPE cells using cultured monolayers. METHODS: We fed RPE monolayers in culture with a single pulse of photoreceptor outer segments (POS). After 24 hours the cells started accumulating AFGs that were comparable to lipofuscin in vivo. Using this model, we used a variety of light and electron microscopical techniques, flow cytometry and Western blot to analyze the formation of AFGs. We also generated a mutant RPE line lacking cathepsin D by gene editing. RESULTS: AFGs seem to derive from incompletely digested POS-containing phagosomes and after 3 days are surrounded by a single membrane positive for lysosome markers. We show by various methods that lysosome-phagosome fusion is required for AFG formation, and that impairment of lysosomal pH or catalytic activity, particularly cathepsin D activity, enhances AF accumulation. CONCLUSIONS: We conclude that lysosomal dysfunction results in incomplete POS degradation and enhanced AFG accumulation

    Does caffeine ingestion before a short-term sprint interval training promote body fat loss?

    Get PDF
    We investigated the effect of caffeine ingestion combined with a 2-wk sprint interval training (SIT) on training-induced reductions in body adiposity. Twenty physically-active men ingested either 5 mg/kg of cellulose as a placebo (PLA, n=10) or 5 mg/kg of caffeine (CAF, n=10) 60 min before each SIT session (13×30 s sprint/15 s of rest). Body mass and skinfold thickness were measured pre- and post-training. Energy expenditure was measured at rest, during exercise, and 45 min after exercise in the first SIT session. Body fat was similar between PLA and CAF groups at pre-training (P\u3e0.05). However, there was a significant decrease in body fat after training in the CAF group (−5.9±4.2%, P\u3c0.05) but not in PLA (1.5±8.0%, P\u3e0.05). There was no difference in energy expenditure at rest and during exercise between PLA and CAF groups (P\u3e0.05), but the post-exercise energy expenditure was 18.3±21.4% greater in the CAF than in the PLA group (P\u3c0.05). In conclusion, caffeine ingestion before SIT sessions induced a body fat loss that may be associated with higher post-exercise energy expenditure
    • …
    corecore