18 research outputs found

    Circulation induced by diffused aeration in a shallow lake

    Get PDF
    Field surveys were carried out to investigate the surface jet flows and the resulting circulation patterns generated by diffused aeration in a shallow lake. In conrast to previous studies, the experimental conditions included point-source bubble plumes with very high air flow rates (100–400 L/min) relative to the shallow water depth (1.5 m). The results indicate that the surface jet velocity can be described by linear profiles. The decay of this velocity with distance displayed a similar behaviour to that reported in the literature, but the surface jet spread much faster under the present conditions. Combining our results with published data allowed for the generation of dimensionless correlations for the velocity and depth of the surface jet. A good agreement between the total circulation flow rates predicted by using the proposed correlations and integral modelling was also obtained. Lastly, a simple returning flow model was proposed to describe the circulation flow patterns induced by the bubble plumes. The results were also applied to assess the impact of circulation on vertical algae migration, which is important for water quality management.Keywords: aeration, algae migration, bubbles, jets, plume

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Programa computacional para simulação do rendimento de ejetores para fins de dragagem

    No full text
    Desenvolveu-se, nessa pesquisa, um programa computacional para previsão e análise do rendimento de ejetores para bombeamento de misturas de água com sólidos em suspensão, nas atividades de mineração. A estrutura do programa consiste na entrada de dados de curvas características obtidas com o ejetor operando com água, tanto como fluido motriz, como de sucção, fornecidas pelo fabricante, para calibração dos coeficientes de perda de carga e simulação do rendimento de tal equipamento para diferentes vazões, massas específicas e concentrações de sólidos no fluido de sucção, baseando-se nas equações de conservação de massa, quantidade de movimento e energia. Os resultados obtidos com o programa apresentaram adequada concordância com dados experimentais disponíveis na literatura

    Influence of mass transfer on bubble plume hydrodynamics

    No full text
    ABSTRACT This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities), both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes

    On mixing a density interface by a bubble plume

    No full text
    We describe new experiments in which a bubble plume, produced from a point source of bubbles, rises through an ambient fluid composed of two layers of fluid of different density. In the lower layer, the speed of the plume exceeds the bubble rise speed and the motion is well described using classical theory of turbulent buoyant plumes. As the mixture enters the upper layer, it is either buoyant and rises to the top of the layer, or is negatively buoyant and forms a fountain. In our experiments, in which a fountain forms in the upper layer, the bubble rise speed exceeds the characteristic speed of this fountain, and a separated flow develops. The bubbles rise to the top of the system, while the lower layer fluid in the fountain rises a finite distance into the upper layer, entrains some of the upper layer fluid, and then collapses. This mixture of fluids then feeds a growing layer of density which is intermediate between the upper and lower layer. The height of rise of the fountain scales with the square of the Froude number of the fountain and the rate of entrainment of upper layer fluid into the fountain is directly proportional to the height of the fountain. This is analogous to the scaling for single-phase fountains with Froude numbers in the same range, $1 , but the constants of proportionality are smaller. We illustrate the relevance of the work for the design of mixing and aeration systems in freshwater reservoirs

    Trade-off between reservoir yield and evaporation losses as a function of lake morphology in semi-arid Brazil

    No full text
    This study investigates the relationships between yield and evaporation as a function of lake morphology in semi-arid Brazil. First, a new methodology was proposed to classify the morphology of 40 reservoirs in the Ceará State, with storage capacities ranging from approximately 5 to 4500 hm3. Then, Monte Carlo simulations were conducted to study the effect of reservoir morphology (including real and simplified conical forms) on the water storage process at different reliability levels. The reservoirs were categorized as convex (60.0%), slightly convex (27.5%) or linear (12.5%). When the conical approximation was used instead of the real lake form, a trade-off occurred between reservoir yield and evaporation losses, with different trends for the convex, slightly convex and linear reservoirs. Using the conical approximation, the water yield prediction errors reached approximately 5% of the mean annual inflow, which is negligible for large reservoirs. However, for smaller reservoirs, this error became important. Therefore, this paper presents a new procedure for correcting the yield-evaporation relationships that were obtained by assuming a conical approximation rather than the real reservoir morphology. The combination of this correction with the Regulation Triangle Diagram is useful for rapidly and objectively predicting reservoir yield and evaporation losses in semi-arid environments

    Impact of Orifice-to-Pipe Diameter Ratio on Leakage Flow: An Experimental Study

    No full text
    The traditional orifice discharge formula used to estimate the flow rate through a leak opening at a pipe wall often produces inaccurate results. This paper reports an original experimental study in which the influence of orifice-to-pipe diameter ratio on leakage flow rate was investigated for several internal/external flow conditions and orifice holes with different shapes. The results revealed that orifice-to-pipe diameter ratio (or pipe wall curvature) indeed influenced the leakage flow, with the discharge coefficient ( C d ) presenting a wide variation (0.60–0.85). As the orifice-to-pipe diameter ratio decreased, the values of C d systematically decreased from about 12% to 3%. Overall, the values of C d also decreased with β (ratio of pressure head differential at the orifice to wall thickness), as observed in previous studies. On the other hand, orifice shape, main pipe flow velocity, and external medium (water or air) all had a secondary effect on C d . The results obtained in the present study not only demonstrated that orifice-to-pipe diameter ratio affects the outflow, but also that real scale pipes may exhibit a relevant deviation of C d from the classical range (0.61–0.67) reported in the literature

    Seasonal and interannual variability of residence time and total phosphorus in a small hypereutrophic lake in the Brazilian northeast

    No full text
    This study evaluates the residence time (RT) and total phosphorus (TP) in a small hypereutrophic lake in the city of Fortaleza, Brazil. The results indicate that RT predicted by a complete-mix model is very similar (R² = 0.83) to that simulated with a 2-D hydrodynamic model (CE-QUAL-W2). Simple power-laws were fitted to describe RT and TP concentration at the lake inlet as functions of lake inflow, yielding correlations of R² = 0.84 and 0.70, respectively. The combination of these correlations with a complete-mix approach provided a comprehensive model that predicted TP values measured at the lake outlet reasonably well (R² = 0.60). In addition, a direct empirical correlation between simulated TP concentration and precipitation was also obtained. The simulations indicate a nearly periodic behaviour of RT and TP, with the seasonal variations being much higher than the interannual ones. Finally, an application of the model showed that a reduction of 99% of the input TP load was required to reach 100% compliance with the required water quality standards; this could be achieved by connecting the residences to the sewage network. The methodology proposed in this research can be easily applied to other lakes in the Brazilian northeast and extended to other tropical regions around the globe

    Modeling phosphorus exchange between bottom sediment and water in tropical semiarid reservoirs.

    Get PDF
    This study investigated phosphorus (P) dynamics in the sediment-water interface of three distinct reservoirs located in a tropical semiarid region. Sequential chemical fractioning of the P content in the sediment and controlled experiments of the sediment-water interface were performed to understand and model the effect of the different P fractions on the exchange dynamics under anoxic and oxic scenarios. The results revealed that the older the reservoir, the higher the amount of iron and aluminum-bound P in the sediment, and that this fraction was responsible for a 10-fold increase in P concentration in the water during anoxic conditions. After aeration, P in water decreased but did not return to its initial concentration. The most recently constructed reservoir showed the lowest P concentration in the sediment and dominance of the unavailable P fraction, resulting in no potential impact on water quality. Phosphorus release and precipitation rates were well described by zero- and first-order models, respectively. Reservoirs with high P availability in the sediment, not only released more phosphorus but also presented a lower precipitation rate, resulting in higher potential damage to water quality and making some in-lake treatment techniques ineffective
    corecore