3,444 research outputs found

    Eigenvalue Placement and Stabilization by Constrained Optimization

    Get PDF
    A pole placement algorithm is proposed which uses constrained nonlinear optimization techniques on a finite dimensional model of a linear n degree of freedom system. Low order feedback control is assumed where r poles may be assigned; r being the rank of the sensor coefficient matrix. It is shown that by combining feedback control theory methods with optimization techniques, one can ensure the stability characteristics of a system, and can alter its transient response

    On damping mechanisms in beams

    Get PDF
    A partial differential equation model of a cantilevered beam with a tip mass at its free end is used to study damping in a composite. Four separate damping mechanisms consisting of air damping, strain rate damping, spatial hysteresis and time hysteresis are considered experimentally. Dynamic tests were performed to produce time histories. The time history data is then used along with an approximate model to form a sequence of least squares problems. The solution of the least squares problem yields the estimated damping coefficients. The resulting experimentally determined analytical model is compared with the time histories via numerical simulation of the dynamic response. The procedure suggested here is compared with a standard modal damping ratio model commonly used in experimental modal analysis

    Evolving Legal Protections for Indigenous Peoples in Africa : Some Post-UNDRIP Reflections

    Get PDF
    Prior to the adoption of the United Nations Declaration on the Rights of Indigenous Peoples (UNDRIP) many African states held a unified and seemingly hostile position towards the UNDRIP exemplified by the concerns outlined in the African Group's Draft Aide Memoire. In order to gain a better understanding of the protections offered to indigenous peoples on the African continent, it is necessary to examine the concerns raised in the aforementioned Draft Aide Memoire and highlight how these concerns have been addressed at the regional level, effectively changing how the human rights norms contained within the UNDRIP are seen, understood and interpreted in the African context. The purpose of this article is to do just that: to examine in particular how the issue of defining indigenous peoples has been tackled on the African continent, how the right to self-determination has unfolded for indigenous peoples in Africa and how indigenous peoples' right to free, prior and informed consent has been interpreted at the regional level.Peer reviewe

    Comparison of acoustic and strain gauge techniques for crack closure measurements

    Get PDF
    A quantitative study on the systems performances of the COD gauge and the acoustic transmission techniques to elastic deformation of part-through crack and compact tension specimens has been conducted. It is shown that the two instruments measure two completely different quantities: The COD gauge yields information on the length change of the specimen whereas the acoustic technique is sensitive directly to the amount of contract area between two surfaces, interfering with the acoustic signal. In another series of experiments, compression tests on parts with specifically prepared surfaces were performed so that the surface contact area could be correlated with the transmitted acoustic signal, as well as the acoustic with the COD gauge signal. A linear relation between contact area and COD gauge signal was obtained until full contact had been established

    Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration

    Full text link
    The primary objective of this research is to develop a deploy-and-forget energy harvesting device for use in low-velocity, highly turbulent fluid flow environments i.e. streams or ventilation systems. The work presented here focuses on a novel, lightweight, highly robust, energy harvester design referred to as piezoelectric grass . This biologically inspired design consists of an array of cantilevers, each constructed with piezoelectric material. When exposed to proper turbulent flow conditions, these cantilevers experience vigorous vibrations. Preliminary results have shown that a small array of piezoelectric grass was able to produce up to 1.0 mW per cantilever in high-intensity turbulent flow having a mean velocity of 11.5 m s −1 . According to the literature, this is among the highest output achieved using similar harvesting methods. A distributed parameter model for energy harvesting from turbulence-induced vibration will be introduced and experimentally validated. This model is generalized for the case of a single cantilever in turbulent cross-flow. Two high-sensitivity pressure probes were needed to perform spectral measurements within various turbulent flows. The design and performance of these probes along with calibration and measurement techniques will be discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98616/1/0964-1726_21_10_105024.pd

    Heavy metal exposure reverses genetic resistance to Chlamydia-induced arthritis

    Get PDF
    Abstract Introduction We have previously observed that Brown Norway (BN) rats display a relative resistance to experimental Chlamydia-induced arthritis. In the present study, we examine an environmental toxin, mercuric chloride (HgCl2), as a modulator of this innate resistance to arthritis. Methods To assess the effect of the heavy metal exposure, one group of rats received two subcutaneous injections of HgCl2 (1 mg/kg) 48 hours apart. Seven days later, the animals received the intra-articular injection of synoviocyte-packaged Chlamydia. Results Histopathology revealed that BN rats receiving only Chlamydia had a minimal cellular infiltration in the joint, which was predominantly mononuclear in character. In contrast, mercury-exposed rats had a marked exacerbation of the histopathological severity of the arthritis, and the infiltration was predominantly neutrophilic. Mercury exposure was also associated with marked enhancement in IgE levels and an alteration in IgG2a/IgG1 ratio, reflecting a Th2 shift. The local cytokine profile in the joint was markedly altered after mercury exposure, with a suppression of tumour necrosis factor-alpha and interferon-gamma but an enhancement of vascular endothelial growth factor. This was associated with decreased host clearance capacity reflected in enhanced bacterial load in both the spleen and the joint and was accompanied by enhanced detection of microbial antigens in the synovial tissues by immunohistological staining. Conclusions Genetically defined cytokine production in the joint defines the severity of reactive arthritis by dictating the local clearance of the pathogen. This interplay can be altered dramatically by heavy metal exposure, which results in suppression of protective cytokines in the microenvironment of the joint

    Theoretical investigation of finite size effects at DNA melting

    Get PDF
    We investigated how the finiteness of the length of the sequence affects the phase transition that takes place at DNA melting temperature. For this purpose, we modified the Transfer Integral method to adapt it to the calculation of both extensive (partition function, entropy, specific heat, etc) and non-extensive (order parameter and correlation length) thermodynamic quantities of finite sequences with open boundary conditions, and applied the modified procedure to two different dynamical models. We showed that rounding of the transition clearly takes place when the length of the sequence is decreased. We also performed a finite-size scaling analysis of the two models and showed that the singular part of the free energy can indeed be expressed in terms of an homogeneous function. However, both the correlation length and the average separation between paired bases diverge at the melting transition, so that it is no longer clear to which of these two quantities the length of the system should be compared. Moreover, Josephson's identity is satisfied for none of the investigated models, so that the derivation of the characteristic exponents which appear, for example, in the expression of the specific heat, requires some care

    Riccati parameter modes from Newtonian free damping motion by supersymmetry

    Full text link
    We determine the class of damped modes \tilde{y} which are related to the common free damping modes y by supersymmetry. They are obtained by employing the factorization of Newton's differential equation of motion for the free damped oscillator by means of the general solution of the corresponding Riccati equation together with Witten's method of constructing the supersymmetric partner operator. This procedure leads to one-parameter families of (transient) modes for each of the three types of free damping, corresponding to a particular type of %time-dependent angular frequency. %time-dependent, antirestoring acceleration (adding up to the usual Hooke restoring acceleration) of the form a(t)=\frac{2\gamma ^2}{(\gamma t+1)^{2}}\tilde{y}, where \gamma is the family parameter that has been chosen as the inverse of the Riccati integration constant. In supersymmetric terms, they represent all those one Riccati parameter damping modes having the same Newtonian free damping partner modeComment: 6 pages, twocolumn, 6 figures, only first 3 publishe

    Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation

    Full text link
    Statistical DNA models available in the literature are often effective models where the base-pair state only (unbroken or broken) is considered. Because of a decrease by a factor of 30 of the effective bending rigidity of a sequence of broken bonds, or bubble, compared to the double stranded state, the inclusion of the molecular conformational degrees of freedom in a more general mesoscopic model is needed. In this paper we do so by presenting a 1D Ising model, which describes the internal base pair states, coupled to a discrete worm like chain model describing the chain configurations [J. Palmeri, M. Manghi, and N. Destainville, Phys. Rev. Lett. 99, 088103 (2007)]. This coupled model is exactly solved using a transfer matrix technique that presents an analogy with the path integral treatment of a quantum two-state diatomic molecule. When the chain fluctuations are integrated out, the denaturation transition temperature and width emerge naturally as an explicit function of the model parameters of a well defined Hamiltonian, revealing that the transition is driven by the difference in bending (entropy dominated) free energy between bubble and double-stranded segments. The calculated melting curve (fraction of open base pairs) is in good agreement with the experimental melting profile of polydA-polydT. The predicted variation of the mean-square-radius as a function of temperature leads to a coherent novel explanation for the experimentally observed thermal viscosity transition. Finally, the influence of the DNA strand length is studied in detail, underlining the importance of finite size effects, even for DNA made of several thousand base pairs.Comment: Latex, 28 pages pdf, 9 figure

    Transfer function modeling of damping mechanisms in distributed parameter models

    Get PDF
    This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems
    • …
    corecore