272 research outputs found
Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study
The origin of the non-exponential relaxation of silver ions in the
crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate
two-time and three-time 109Ag NMR correlation functions. The non-exponentiality
is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an
intrinsic non-exponentiality. Thus, the data give no evidence for the relevance
of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure
Channel diffusion of sodium in a silicate glass
We use classical molecular dynamics simulations to study the dynamics of
sodium atoms in amorphous NaO-4SiO. We find that the sodium
trajectories form a well connected network of pockets and channels. Inside
these channels the motion of the atoms is not cooperative but rather given by
independent thermally activated hops of individual atoms between the pockets.
By determining the probability that an atom returns to a given starting site,
we show that such events are not important for the dynamics of this system.Comment: 10 pages of Latex, 5 figures, one figure added, text expande
Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions
Molecular dynamics simulations are performed to study the lithium jumps in
LiPO3 glass. In particular, we calculate higher-order correlation functions
that probe the positions of single lithium ions at several times. Three-time
correlation functions show that the non-exponential relaxation of the lithium
ions results from both correlated back-and-forth jumps and the existence of
dynamical heterogeneities, i.e., the presence of a broad distribution of jump
rates. A quantitative analysis yields that the contribution of the dynamical
heterogeneities to the non-exponential depopulation of the lithium sites
increases upon cooling. Further, correlated back-and-forth jumps between
neighboring sites are observed for the fast ions of the distribution, but not
for the slow ions and, hence, the back-jump probability depends on the
dynamical state. Four-time correlation functions indicate that an exchange
between fast and slow ions takes place on the timescale of the jumps
themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites
featuring fast and slow lithium dynamics, respectively, are intimately mixed.
In addition, a backward correlation beyond the first neighbor shell for highly
mobile ions and the presence of long-range dynamical heterogeneities suggest
that fast ion migration occurs along preferential pathways in the glassy
matrix. In the melt, we find no evidence for correlated back-and-forth motions
and dynamical heterogeneities on the length scale of the next-neighbor
distance.Comment: 12 pages, 13 figure
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Bullying as a Developmental Precursor to Sexual and Dating Violence Across Adolescence: Decade in Review
Adolescent bullying continues to be a major focus of scholarship across the globe. This article reviews research from 2010 to 2021 with a particular focus on longitudinal studies of the bully–sexual violence pathway (BSVP), where bullying serves as a precursor for sexual violence (SV) (e.g., sexual harassment, sexual coercion, and sexual assault) and teen dating violence via individual and socio-contextual mediators. Articles reviewed consisted of a total of 505, which included 17 meta-analyses and systematic reviews. Databases used for the search were Academic Search Complete, Education Full Text (H. W. Wilson), ERIC, National Criminal Justice Reference Service Abstracts, PsycINFO, PubMed (Medline), and Social Sciences Abstracts (H. W. Wilson). In total, 107 peer-reviewed articles were included in this review. Potential mechanisms underlying the BSVP include social dominance orientation, exposure to sexual education, and alcohol use. Several school-based intervention approaches have evidenced marginal success in reducing rates of bullying and SV by targeting factors undergirding both behaviors. The efficacy of international prevention approaches is summarized. Gaps in the literature are identified and future research is proposed
The Resilient Organization: A Meta-Analysis of the Effect of Communication on Team Diversity and Team Performance
The Input-Process-Output framework is adopted to examine the impact of diversity attributes (the input) on communication (the process) and their influence on performance (the output), to understand the internal group/team working mechanisms of organizational resilience. A meta-analysis of 174 correlations from 35 empirical studies undertaken over 35 years (1982-2017) showed that members of a team who have different experiences are more likely to share information and communicate openly when they deal with a task that requires collaboration outside the team. This supports the view that organizations are more resilient by being more closely connected with the external environment. Differences in social categories tend to favor openness of communication, especially in the case of age diversity and race/ethnicity diversity. An increase in openness of communication is likely to enhance team performance, particularly for small and medium sized teams operating in manufacturing industries, while frequency of communication can be beneficial for both large and medium sized teams working in the high technology industry. The positive workings of these associations form the resilient organization
Social-Ecological Predictors of Homophobic Name-Calling Perpetration and Victimization Among Early Adolescents
Bias-based aggression at school in the form of homophobic name-calling is quite prevalent among early adolescents. Homophobic name-calling is associated with low academic performance, higher risky sexual behaviors, and substance abuse, among other adverse outcomes. This longitudinal study examined risk and protective factors across multiple domains of the social ecology (individual, peer, family, school and community) and levels of analysis (within- and between-person) associated with homophobic name-calling perpetration and victimization. Students from four middle schools in the U.S. Midwest (N = 1,655; (Formula presented.) age = 12.75; range = 10–16 years) were surveyed four times (Spring/Fall 2008, Spring/Fall 2009). For homophobic name-calling perpetration, significant risk factors included impulsivity, social dominance, traditional masculinity, family violence, and neighborhood violence; while empathy, peer support, school belonging, and adult support were significant protective factors. For homophobic name-calling victimization, significant risk factors included empathy (between-person), impulsivity, traditional masculinity, family violence, and neighborhood violence, while empathy (within-person), parental monitoring, peer support, school belonging, and adult support were significant protective factors
Spin alignment of leading mesons in hadronic decays
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K ∗ (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K ∗ 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of −0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K ∗ 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K ∗ (892) 0 mesons per hadronic Z 0 decay
Tipos de fibras no músculo flexor longo do hálux de frangos de corte submetidos ao estresse pelo calor e frio e alimentados em "pair-feeding"
Respostas fisiológicas de cabras Anglonubianas a condições ambientais com temperatura elevada
- …
