14 research outputs found

    Microscopic examination of bone marrow aspirates in malignant disorders of haematopoiesis—a comparison of two slide preparation techniques

    Get PDF
    It is mandatory to perform microscopic examinations of bone marrow aspirates during the diagnosis of many neoplastic haematopoiesis disorders. In 2008, The International Committee for Standardization in Hematology recommended the use of two types of slides for the microscopic evaluation of bone marrow: wedge-spread film and crush film slides. Because these techniques have not yet been compared, we performed such a comparison. Routine bone marrow samples from 250 patients diagnosed due to different neoplastic haematological disorders were evaluated. The major differences between the two compared techniques were identified in 13 patients with non-Hodgkin’s lymphoma, seven patients with systemic mastocytosis and 11 patients with acute leukaemias or myelodysplastic syndromes or chronic myelomonocytic leukaemia. Differences were noted also in many patients with multiple myeloma, but the clinical significance of these discrepancies was rather modest. The major causes of the differences observed seemed to be the dilution of marrow with blood cells and the focal growth of many neoplastic cells. We believe that the crush technique is more advantageous compared to the wedge-spread films. Therefore, we recommend the use of crush films as the primary method for establishing a diagnosis or for making therapeutic decisions based on the microscopic examination of bone marrow

    International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma.

    No full text
    Several imaging technologies are used for the diagnosis and management of patients with multiple myeloma (MM). Conventional radiography, computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine imaging are all used in an attempt to better clarify the extent of bone disease and soft tissue disease in MM. This review summarizes all available data in the literature and provides recommendations for the use of each of the technologies. Conventional radiography still remains the 'gold standard' of the staging procedure of newly diagnosed and relapsed myeloma patients. MRI gives information complementary to skeletal survey and is recommended in MM patients with normal conventional radiography and in all patients with an apparently solitary plasmacytoma of bone. Urgent MRI or CT (if MRI is not available) is the diagnostic procedure of choice to assess suspected cord compression. Bone scintigraphy has no place in the routine staging of myeloma, whereas sequential dual-energy X-ray absorptiometry scans are not recommended. Positron emission tomography/CT or MIBI imaging are also not recommended for routine use in the management of myeloma patients, although both techniques may be useful in selected cases that warrant clarification of previous imaging findings, but such an approach should ideally be made within the context of a clinical trial

    International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma

    No full text
    Several imaging technologies are used for the diagnosis and management of patients with multiple myeloma (MM). Conventional radiography, computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine imaging are all used in an attempt to better clarify the extent of bone disease and soft tissue disease in MM. This review summarizes all available data in the literature and provides recommendations for the use of each of the technologies. Conventional radiography still remains the ‘gold standard’ of the staging procedure of newly diagnosed and relapsed myeloma patients. MRI gives information complementary to skeletal survey and is recommended in MM patients with normal conventional radiography and in all patients with an apparently solitary plasmacytoma of bone. Urgent MRI or CT (if MRI is not available) is the diagnostic procedure of choice to assess suspected cord compression. Bone scintigraphy has no place in the routine staging of myeloma, whereas sequential dual-energy X-ray absorptiometry scans are not recommended. Positron emission tomography/CT or MIBI imaging are also not recommended for routine use in the management of myeloma patients, although both techniques may be useful in selected cases that warrant clarification of previous imaging findings, but such an approach should ideally be made within the context of a clinical trial. Leukemia (2009) 23, 1545-1556; doi: 10.1038/leu.2009.89; published online 7 May 200

    International Myeloma Working Group guidelines for the management of multiple myeloma patients ineligible for standard high-dose chemotherapy with autologous stem cell transplantation

    No full text
    In 2005, the first guidelines were published on the management of patients with multiple myeloma (MM). An expert panel reviewed the currently available literature as the basis for a set of revised and updated consensus guidelines for the diagnosis and management of patients with MM who are not eligible for autologous stem cell transplantation. Here we present recommendations on the diagnosis, treatment of newly diagnosed non-transplant-eligible patients and the management of complications occurring during induction therapy among these patients. These guidelines will aid the physician in daily clinical practice and will ensure optimal care for patients with MM. Leukemia (2009) 23, 1716-1730; doi: 10.1038/leu.2009.122; published online 4 June 200
    corecore