21 research outputs found

    Toward an Identification of Resources Influencing Habitat Use in a Multi-Specific Context

    Get PDF
    Interactions between animal behaviour and the environment are both shaping observed habitat use. Despite the importance of inter-specific interactions on the habitat use performed by individuals, most previous analyses have focused on case studies of single species. By focusing on two sympatric populations of large herbivores with contrasting body size, we went one step beyond by studying variation in home range size and identifying the factors involved in such variation, to define how habitat features such as resource heterogeneity, resource quality, and openness created by hurricane or forest managers, and constraints may influence habitat use at the individual level. We found a large variability among individual's home range size in both species, particularly in summer. Season appeared as the most important factor accounting for observed variation in home range size. Regarding habitat features, we found that (i) the proportion of area damaged by the hurricane was the only habitat component that inversely influenced roe deer home range size, (ii) this habitat type also influenced both diurnal and nocturnal red deer home range sizes, (iii) home range size of red deer during the day was inversely influenced by the biomass of their preferred plants, as were both diurnal and nocturnal core areas of the red deer home range, and (iv) we do not find any effect of resource heterogeneity on home range size in any case. Our results suggest that a particular habitat type (i.e. areas damaged by hurricane) can be used by individuals of sympatric species because it brings both protected and dietary resources. Thus, it is necessary to maintain the openness of these areas and to keep animal density quite low as observed in these hunted populations to limit competition between these sympatric populations of herbivores

    Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore

    Get PDF
    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use

    Effects of Wolves on Elk and Cattle Behaviors: Implications for Livestock Production and Wolf Conservation

    Get PDF
    BACKGROUND: In many areas, livestock are grazed within wolf (Canis lupus) range. Predation and harassment of livestock by wolves creates conflict and is a significant challenge for wolf conservation. Wild prey, such as elk (Cervus elaphus), perform anti-predator behaviors. Artificial selection of cattle (Bos taurus) might have resulted in attenuation or absence of anti-predator responses, or in erratic and inconsistent responses. Regardless, such responses might have implications on stress and fitness. METHODOLOGY/PRINCIPAL FINDINGS: We compared elk and cattle anti-predator responses to wolves in southwest Alberta, Canada within home ranges and livestock pastures, respectively. We deployed satellite- and GPS-telemetry collars on wolves, elk, and cattle (n = 16, 10 and 78, respectively) and measured seven prey response variables during periods of wolf presence and absence (speed, path sinuosity, time spent head-up, distance to neighboring animals, terrain ruggedness, slope and distance to forest). During independent periods of wolf presence (n = 72), individual elk increased path sinuosity (Z = -2.720, P = 0.007) and used more rugged terrain (Z = -2.856, P = 0.004) and steeper slopes (Z = -3.065, P = 0.002). For cattle, individual as well as group behavioral analyses were feasible and these indicated increased path sinuosity (Z = -2.720, P = 0.007) and decreased distance to neighbors (Z = -2.551, P = 0.011). In addition, cattle groups showed a number of behavioral changes concomitant to wolf visits, with variable direction in changes. CONCLUSIONS/SIGNIFICANCE: Our results suggest both elk and cattle modify their behavior in relation to wolf presence, with potential energetic costs. Our study does not allow evaluating the efficacy of anti-predator behaviors, but indicates that artificial selection did not result in their absence in cattle. The costs of wolf predation on livestock are often compensated considering just the market value of the animal killed. However, society might consider refunding some additional costs (e.g., weight loss and reduced reproduction) that might be associated with the changes in cattle behaviors that we documented

    Bone histology provides insights into the life history mechanisms underlying dwarfing in hipparionins

    Get PDF
    Size shifts may be a by-product of alterations in life history traits driven by natural selection. Although this approach has been proposed for islands, it has not yet been explored in continental faunas. The trends towards size decrease experienced by some hipparionins constitute a good case study for the application of a life history framework to understand the size shifts on the continent. Here, we analysed bone microstructure to reconstruct the growth of some different-sized hipparionins from Greece and Spain. The two dwarfed lineages studied show different growth strategies. The Greek hipparions ceased growth early at a small size thus advancing maturity, whilst the slower-growing Spanish hipparion matured later at a small size. Based on predictive life history models, we suggest that high adult mortality was the likely selective force behind early maturity and associated size decrease in the Greek lineage. Conversely, we infer that resource limitation accompanied by high juvenile mortality triggered decrease in growth rate and a relative late maturity in the Spanish lineage. Our results provide evidence that different selective pressures can precipitate different changes in life history that lead to similar size shifts

    Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients

    No full text
    Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches
    corecore