1,033 research outputs found

    NOD2/RICK-dependent β-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection.

    Get PDF
    Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media

    Focusing and Compression of Ultrashort Pulses through Scattering Media

    Full text link
    Light scattering in inhomogeneous media induces wavefront distortions which pose an inherent limitation in many optical applications. Examples range from microscopy and nanosurgery to astronomy. In recent years, ongoing efforts have made the correction of spatial distortions possible by wavefront shaping techniques. However, when ultrashort pulses are employed scattering induces temporal distortions which hinder their use in nonlinear processes such as in multiphoton microscopy and quantum control experiments. Here we show that correction of both spatial and temporal distortions can be attained by manipulating only the spatial degrees of freedom of the incident wavefront. Moreover, by optimizing a nonlinear signal the refocused pulse can be shorter than the input pulse. We demonstrate focusing of 100fs pulses through a 1mm thick brain tissue, and 1000-fold enhancement of a localized two-photon fluorescence signal. Our results open up new possibilities for optical manipulation and nonlinear imaging in scattering media

    Single-base substitutions in the CHM promoter as a cause of choroideremia

    Get PDF
    Although over 150 unique mutations affecting the coding sequence of CHM have been identified in patients with the X-linked chorioretinal disease choroideremia (CHM), no regulatory mutations have been reported, and indeed the promoter has not been defined. Here, we describe two independent families affected by CHM bearing a mutation outside the gene's coding region at position c.-98: C>A and C>T, which segregated with the disease. The male proband of family 1 was found to lack CHM mRNA and its gene product Rab escort protein 1, whereas whole-genome sequencing of an affected male in family 2 excluded the involvement of any other known retinal genes. Both mutations abrogated luciferase activity when inserted into a reporter construct, and by further employing the luciferase reporter system to assay sequences 5′ to the gene, we identified the CHM promoter as the region encompassing nucleotides c.-119 to c.-76. These findings suggest that the CHM promoter region should be examined in patients with CHM who lack coding sequence mutations, and reveals, for the first time, features of the gene's regulation

    Accurate rapid averaging of multihue ensembles is due to a limited capacity subsampling mechanism

    Get PDF
    It is claimed that the extraction of average features from rapidly presented ensembles is holistic, with attention distributed across the whole set. We investigated whether observers’ extraction of mean hue is holistic or could reflect subsampling. Analysis of selections for the mean hue revealed a distribution that peaked at the expected mean hue. However, an ideal observer simulation suggested that a subsampling mechanism incorporating just two items from each ensemble would suffice to reproduce the precision of most observers. The results imply that hue may not be averaged as holistically and efficiently as other attributes

    Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients.

    Get PDF
    BACKGROUND/AIMS: Human grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of diabetes. We evaluate the performance of an automated artificial intelligence (AI) algorithm to triage retinal images from the English Diabetic Eye Screening Programme (DESP) into test-positive/technical failure versus test-negative, using human grading following a standard national protocol as the reference standard. METHODS: Retinal images from 30 405 consecutive screening episodes from three English DESPs were manually graded following a standard national protocol and by an automated process with machine learning enabled software, EyeArt v2.1. Screening performance (sensitivity, specificity) and diagnostic accuracy (95% CIs) were determined using human grades as the reference standard. RESULTS: Sensitivity (95% CIs) of EyeArt was 95.7% (94.8% to 96.5%) for referable retinopathy (human graded ungradable, referable maculopathy, moderate-to-severe non-proliferative or proliferative). This comprises sensitivities of 98.3% (97.3% to 98.9%) for mild-to-moderate non-proliferative retinopathy with referable maculopathy, 100% (98.7%,100%) for moderate-to-severe non-proliferative retinopathy and 100% (97.9%,100%) for proliferative disease. EyeArt agreed with the human grade of no retinopathy (specificity) in 68% (67% to 69%), with a specificity of 54.0% (53.4% to 54.5%) when combined with non-referable retinopathy. CONCLUSION: The algorithm demonstrated safe levels of sensitivity for high-risk retinopathy in a real-world screening service, with specificity that could halve the workload for human graders. AI machine learning and deep learning algorithms such as this can provide clinically equivalent, rapid detection of retinopathy, particularly in settings where a trained workforce is unavailable or where large-scale and rapid results are needed

    Sensitivity and Specificity of Multiple Kato-Katz Thick Smears and a Circulating Cathodic Antigen Test for Schistosoma mansoni Diagnosis Pre- and Post-repeated-Praziquantel Treatment

    Get PDF
    Two Kato-Katz thick smears (Kato-Katzs) from a single stool are currently recommended for diagnosing Schistosoma mansoni infections to map areas for intervention. This ‘gold standard’ has low sensitivity at low infection intensities. The urine point-of-care circulating cathodic antigen test (POC-CCA) is potentially more sensitive but how accurately they detect S. mansoni after repeated praziquantel treatments, their suitability for measuring drug efficacy and their correlation with egg counts remain to be fully understood. We compared the accuracies of one to six Kato-Katzs and one POC-CCA for the diagnosis of S. mansoni in primary-school children who have received zero to ten praziquantel treatments. We determined the impact each diagnostic approach may have on monitoring and evaluation (M&E) and drug-efficacy findings

    A model to control the epidemic of H5N1 influenza at the source

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No country is fully prepared for a 1918-like pandemic influenza. Averting a pandemic of H5N1 influenza virus depends on the successful control of its endemicity, outbreaks in poultry and occasional spillage into human which carries a case-fatality rate of over 50%. The use of perimetric depopulation and vaccination has failed to halt the spread of the epidemic. Blanket vaccination for all poultry over a large geographical area is difficult. A combination of moratorium, segregation of water fowls from chickens and vaccination have been proved to be effective in the Hong Kong Special Administrative Region (HKSAR) since 2002 despite endemicity and outbreaks in neighbouring regions. Systematic surveillance in southern China showed that ducks and geese are the primary reservoirs which transmit the virus to chickens, minor poultry and even migratory birds.</p> <p>Presentation of the hypothesis</p> <p>We hypothesize that this combination of moratorium, poultry segregation and targeted vaccination if successfully adapted to an affected district or province in any geographical region with high endemicity would set an example for the control in other regions.</p> <p>Testing the hypothesis</p> <p>A planned one-off moratorium of 3 weeks at the hottest month of the year should decrease the environmental burden as a source of re-infection. Backyard farms will then be re-populated by hatchlings from virus-free chickens and minor poultry only. Targeted immunization of the ducks and geese present only in the industrial farms and also the chickens would be strictly implemented as blanket immunization of all backyard poultry is almost impossible. Freely grazing ducks and geese would not be allowed until neutralizing antibodies of H5 subtype virus is achieved. As a proof of concept, a simple mathematical model with susceptible-infected-recovered (SIR) structure of coupled epidemics between aquatic birds (mainly ducks and geese) and chickens was used to estimate transmissibility within and between these two poultry populations. In the field the hypothesis is tested by prospective surveillance of poultry and immunocompetent patients hospitalized for severe pneumonia for the virus before and after the institution of these measures.</p> <p>Implications of the Hypothesis</p> <p>A combination of targeted immunization with the correct vaccine, segregation of poultry species and moratorium of poultry in addition to the present surveillance, biosecurity and hygienic measures at the farm, market and personal levels could be important in the successful control of the H5N1 virus in poultry and human for an extensive geographical region with continuing outbreaks. Alternatively a lesser scale of intervention at the district level can be considered if there is virus detection without evidence of excess poultry deaths since asymptomatic shedding is common in waterfowls.</p

    Threat of an influenza pandemic: family physicians in the front line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chance of an influenza pandemic is real and clinicians should keep themselves informed about the rationale and science behind preventive and therapeutic principles relating to an (impending) influenza pandemic.</p> <p>Discussion</p> <p>Vaccination is considered the best prevention in case of a pandemic threat and first choice to contain the impact of a pandemic. Pending the availability of an effective pandemic vaccine, antivirals are likely the only effective agents for prevention and treatment. When an influenza pandemic is impending, all interventions aim to prevent people becoming infected and to suppress replication and transmission of the virus as much as possible. Antivirals will be prescribed to patients with laboratory confirmed pre-pandemic influenza as well as to their contacts (post-exposure prophylaxis) which may delay development of or even prevent a pandemic. During a manifest influenza pandemic, however, there is large-scale spreading of the influenza virus. Therefore, preventive use of antivirals is less efficient to prevent transmission. Delaying the pandemic is then important in order to prevent exhausting public health resources and disruption of society. Thus, during a manifest pandemic everyone with influenza symptoms should receive antivirals as quickly as possible, regardless of virological confirmation. To ensure optimal effectiveness of antivirals and to minimize development of drug resistant viral strains, the use of antivirals for annual influenza should be restrictive. The crucial position of family physicians during an (impending) influenza pandemic necessitates the development of primary health care guidelines on this topic for all countries.</p> <p>Summary</p> <p>Family physicians will play a key role in assessing and treating victims of a new influenza virus, and in reassuring the worried well. We outline various possible interventions in the event of an impending and a manifest influenza pandemic, such as non-medial measures, prescription of antivirals, and vaccination, and emphasize the need for pandemic influenza preparedness.</p

    Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)

    Get PDF
    Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (R0). The R0 for novel influenza A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of R0 estimated for the 1918–1919 pandemic strain (mean R0~2: range 1.4 to 2.8) and is comparable to R0 values estimated for seasonal strains of influenza (mean R0 1.3: range 0.9 to 2.1). By reviewing results from previous modeling studies we conclude it is theoretically possible that a pandemic of H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to achieve the necessary levels of vaccination and treatment for control. As a recent modeling study has shown, a global cooperative strategy will be essential in order to control a pandemic. This strategy will require resource-rich countries to share their vaccines and antivirals with resource-constrained and resource-poor countries. We conclude our review by discussing the necessity of developing new biologically complex models. We suggest that these models should simultaneously track the transmission dynamics of multiple strains of influenza in bird, pig and human populations. Such models could be critical for identifying effective new interventions, and informing pandemic preparedness planning. Finally, we show that by modeling cross-species transmission it may be possible to predict the emergence of pandemic strains of influenza
    • …
    corecore