23 research outputs found

    Why can pulmonary vein stenoses created by radiofrequency catheter ablation worsen during and after follow-up ? A potential explanation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiofrequency catheter ablation of excitation foci inside pulmonary veins (PV) generates stenoses that can become quite severe during or after the follow-up period. Since severe PV stenoses have most often disastrous consequences, it would be important to know the underlying mechanism of this temporal evolution. The present study proposes a potential explanation based on mechanical considerations.</p> <p>Methods</p> <p>we have used a mathematical-physical model to examine the cyclic increase in axial wall stress induced in the proximal (= upstream), non-stenosed segment of a stenosed pulmonary vein during the forward flow phases. In a representative example, the value of this increase at peak flow was calculated for diameter stenoses (DS) ranging from 1 to 99%.</p> <p>Results</p> <p>The increase becomes appreciable at a DS of roughly 30% and rise then strongly with further increasing DS value. At high DS values (e.g. > 90%) the increase is approximately twice the value of the axial stress present in the PV during the zero-flow phase.</p> <p>Conclusion</p> <p>Since abnormal wall stresses are known to induce damages and abnormal biological processes (e.g., endothelium tears, elastic membrane fragmentations, matrix secretion, myofibroblast generation, etc) in the vessel wall, it seems plausible that the supplementary axial stress experienced cyclically by the stenotic and the proximal segments of the PV is responsible for the often observed progressive reduction of the vessel lumen after healing of the ablation injury. In the light of this model, the only potentially effective therapy in these cases would be to reduce the DS as strongly as possible. This implies most probably stenting or surgery.</p

    Standing genetic variation and the evolution of drug resistance in HIV

    Get PDF
    Drug resistance remains a major problem for the treatment of HIV. Resistance can occur due to mutations that were present before treatment starts or due to mutations that occur during treatment. The relative importance of these two sources is unknown. We study three different situations in which HIV drug resistance may evolve: starting triple-drug therapy, treatment with a single dose of nevirapine and interruption of treatment. For each of these three cases good data are available from literature, which allows us to estimate the probability that resistance evolves from standing genetic variation. Depending on the treatment we find probabilities of the evolution of drug resistance due to standing genetic variation between 0 and 39%. For patients who start triple-drug combination therapy, we find that drug resistance evolves from standing genetic variation in approximately 6% of the patients. We use a population-dynamic and population-genetic model to understand the observations and to estimate important evolutionary parameters. We find that both, the effective population size of the virus before treatment, and the fitness of the resistant mutant during treatment, are key-parameters that determine the probability that resistance evolves from standing genetic variation. Importantly, clinical data indicate that both of these parameters can be manipulated by the kind of treatment that is used.Comment: 33 pages 6 figure

    Effectiveness of probiotics in the prevention of carious lesions during treatment with fixed orthodontic appliances.

    Full text link

    Pulmonary Vein Stenosis

    No full text

    Pregnancy-related low back pain and pelvic girdle pain approximately 14 months after pregnancy - pain status, self-rated health and family situation

    Get PDF
    Background: Pelvic girdle pain (PGP) in pregnancy is distinct from pregnancy-related low back pain (PLBP). However, women with combined PLBP and PGP report more serious consequences in terms of health and function. PGP has been estimated to affect about half of pregnant women, where 25% experience serious pain and 8% experience severe disability. To date there are relatively few studies regarding persistent PLBP/PGP postpartum of more than 3 months, thus the main objective was to identify the prevalence of persistent PLBP and PGP as well as the differences over time in regard to pain status, self-rated health (SRH) and family situation at 12 months postpartum. Methods: The study is a 12 month follow-up of a cohort of pregnant women developing PLBP and PGP during pregnancy, and who experienced persistent pain at 6 month follow-up after pregnancy. Women reporting PLBP/PGP (n = 639) during pregnancy were followed up with a second questionnaire at approximately six month after delivery. Women reporting recurrent or persistent LBP/PGP at the second questionnaire (n = 200) were sent a third questionnaire at 12 month postpartum. Results: A total of 176 women responded to the questionnaire. Thirty-four women (19.3%) reported remission of LBP/PGP, whereas 65.3% (n = 115) and 15.3% (n = 27), reported recurrent LBP/PGP or continuous LBP/PGP, respectively. The time between base line and the 12 months follow-up was in actuality 14 months. Women with previous LBP before pregnancy had an increased odds ratio (OR) of reporting 'recurrent pain' (OR = 2.47) or 'continuous pain' (OR = 3.35) postpartum compared to women who reported 'no pain' at the follow-up. Women with 'continuous pain' reported statistically significant higher level of pain at all measure points (0, 6 and 12 months postpartum). Non-responders were found to report a statistically significant less positive scoring regarding relationship satisfaction compared to responders. Conclusions: The results from this study demonstrate that persistent PLBP/PGP is a major individual and public health issue among women 14 months postpartum, negatively affecting their self-reported health. However, the perceived relationship satisfaction seems to be stable between the groups
    corecore