31 research outputs found

    The Detection of Bacteria in the Maxillary Sinus Secretion of Patients With Acute Rhinosinusitis Using an Electronic Nose : A Pilot Study

    Get PDF
    Objective: Detecting bacteria as a causative pathogen of acute rhinosinusitis (ARS) is a challenging task. Electronic nose technology is a novel method for detecting volatile organic compounds (VOCs) that has also been studied in association with the detection of several diseases. The aim of this pilot study was to analyze maxillary sinus secretion with differential mobility spectrometry (DMS) and to determine whether the secretion demonstrates a different VOC profile when bacteria are present. Methods: Adult patients with ARS symptoms were examined. Maxillary sinus contents were aspirated for bacterial culture and DMS analysis. k-Nearest neighbor and linear discriminant analysis were used to classify samples as positive or negative, using bacterial cultures as a reference. Results: A total of 26 samples from 15 patients were obtained. After leave-one-out cross-validation, k-nearest neighbor produced accuracy of 85%, sensitivity of 67%, specificity of 94%, positive predictive value of 86%, and negative predictive value of 84%. Conclusions: The results of this pilot study suggest that bacterial positive and bacterial negative sinus secretion release different VOCs and that DMS has the potential to detect them. However, as the results are based on limited data, further conclusions cannot be made. DMS is a novel method in disease diagnostics and future studies should examine whether the method can detect bacterial ARS by analyzing exhaled air.publishedVersionPeer reviewe

    Method for the Intraoperative Detection of IDH Mutation in Gliomas with Differential Mobility Spectrometry

    Get PDF
    Isocitrate dehydrogenase (IDH) mutation status is an important factor for surgical decision-making: patients with IDH-mutated tumors are more likely to have a good long-term prognosis, and thus favor aggressive resection with more survival benefit to gain. Patients with IDH wild-type tumors have generally poorer prognosis and, therefore, conservative resection to avoid neurological deficit is favored. Current histopathological analysis with frozen sections is unable to identify IDH mutation status intraoperatively, and more advanced methods are therefore needed. We examined a novel method suitable for intraoperative IDH mutation identification that is based on the differential mobility spectrometry (DMS) analysis of the tumor. We prospectively obtained tumor samples from 22 patients, including 11 IDH-mutated and 11 IDH wild-type tumors. The tumors were cut in 88 smaller specimens that were analyzed with DMS. With a linear discriminant analysis (LDA) algorithm, the DMS was able to classify tumor samples with 86% classification accuracy, 86% sensitivity, and 85% specificity. Our results show that DMS is able to differentiate IDH-mutated and IDH wild-type tumors with good accuracy in a setting suitable for intraoperative use, which makes it a promising novel solution for neurosurgical practice.Peer reviewe

    Differentiation of aspirated nasal air from room air using analysis with a differential mobility spectrometry-based electronic nose : a proof-of-concept study

    Get PDF
    Over the last few decades, breath analysis using electronic nose (eNose) technology has become a topic of intense research, as it is both non-invasive and painless, and is suitable for point-of-care use. To date, however, only a few studies have examined nasal air. As the air in the oral cavity and the lungs differs from the air in the nasal cavity, it is unknown whether aspirated nasal air could be exploited with eNose technology. Compared to traditional eNoses, differential mobility spectrometry uses an alternating electrical field to discriminate the different molecules of gas mixtures, providing analogous information. This study reports the collection of nasal air by aspiration and the subsequent analysis of the collected air using a differential mobility spectrometer. We collected nasal air from ten volunteers into breath collecting bags and compared them to bags of room air and the air aspirated through the device. Distance and dissimilarity metrics between the sample types were calculated and statistical significance evaluated with Kolmogorov-Smirnov test. After leave-one-day-out cross-validation, a shrinkage linear discriminant classifier was able to correctly classify 100% of the samples. The nasal air differed (p < 0.05) from the other sample types. The results show the feasibility of collecting nasal air by aspiration and subsequent analysis using differential mobility spectrometry, and thus increases the potential of the method to be used in disease detection studies.acceptedVersionPeer reviewe

    Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes

    Get PDF
    We analyzed the associations between whole blood microRNA profiles and the indices of glucose metabolism and impaired fasting glucose and examined whether the discovered microRNAs correlate with the expression of their mRNA targets. MicroRNA and gene expression profiling were performed for the Young Finns Study participants (n= 871). Glucose, insulin, and glycated hemoglobin (HbA1c) levels were measured, the insulin resistance index (HOMA2-IR) was calculated, and the glycemic status (normoglycemic [n = 534]/impaired fasting glucose [IFG] [n = 252]/type 2 diabetes [T2D] [n = 24]) determined. Levels of hsa-miR-144-5p, -122-5p, -148a-3p, -589-5p, and hsa-let-7a-5p associated with glycemic status. hsa-miR-144-5p and -148a-3p associated with glucose levels, while hsa-miR-144-5p, -122-5p, -184, and -339-3p associated with insulin levels and HOMA2-IR, and hsa-miR-148a-3p, -15b-3p, -93-3p, -146b-5p, -221-3p, -18a-3p, -642a-5p, and -181-2-3p associated with HbA1c levels. The targets of hsa-miR-146b-5p that correlated with its levels were enriched in inflammatory pathways, and the targets of hsa-miR-221-3p were enriched in insulin signaling and T2D pathways. These pathways showed indications of co-regulation by HbA1c-associated miRNAs. There were significant differences in the microRNA profiles associated with glucose, insulin, or HOMA-IR compared to those associated with HbA1c. The HbA1c-associated miRNAs also correlated with the expression of target mRNAs in pathways important to the development ofT2D.Peer reviewe

    The biomarker and causal roles of homoarginine in the development of cardiometabolic diseases: an observational and Mendelian randomization analysis

    Get PDF
    High L-homoarginine (hArg) levels are directly associated with several risk factors for cardiometabolic diseases whereas low levels predict increased mortality in prospective studies. The biomarker role of hArg in young adults remains unknown. To study the predictive value of hArg in the development of cardiometabolic risk factors and diseases, we utilized data on high-pressure liquid chromatography-measured hArg, cardiovascular risk factors, ultrasound markers of preclinical atherosclerosis and type 2 diabetes from the population-based Young Finns Study involving 2,106 young adults (54.6% females, aged 24-39). We used a Mendelian randomization approach involving tens to hundreds of thousands of individuals to test causal associations. In our 10-year follow-up analysis, hArg served as an independent predictor for future hyperglycaemia (OR 1.31, 95% CI 1.06-1.63) and abdominal obesity (OR 1.60, 95% 1.14-2.30) in men and type 2 diabetes in women (OR 1.55, 95% CI 1.02-2.41). The MR analysis revealed no evidence of causal associations between serum hArg and any of the studied cardiometabolic outcomes. In conclusion, lifetime exposure to higher levels of circulating hArg does not seem to alter cardiometabolic disease risk. Whether hArg could be used as a biomarker for identification of individuals at risk developing cardiometabolic abnormalities merits further investigation

    Fatty liver is associated with blood pathways of inflammatory response, immune system activation and prothrombotic state in Young Finns Study

    Get PDF
    Fatty liver (FL) disease is the most common type of chronic liver disease. We hypothesized that liver's response to the process where large droplets of triglyceride fat accumulate in liver cells is reflected also in gene pathway expression in blood. Peripheral blood genome wide gene expression analysis and ultrasonic imaging of liver were performed for 1,650 participants (316 individuals with FL and 1,334 controls) of the Young Finns Study. Gene set enrichment analysis (GSEA) was performed for the expression data. Fourteen gene sets were upregulated (false discovery rate, FDR < 0.05) in subjects with FL. These pathways related to extracellular matrix (ECM) turnover, immune response regulation, prothrombotic state and neural tissues. After adjustment for known risk factors and biomarkers of FL, we found i) integrin A4B1 signaling, ii) leukocyte transendothelial migration, iii) CD40/CD40L and iv) netrin-1 signaling pathways to be upregulated in individuals with FL (nominal p < 0.05). From these all but not ii) remained significantly upregulated when analyzing only subjects without history of heavy alcohol use. In conclusion, FL was associated with blood gene sets of ECM turnover, inflammatory response, immune system activation and prothrombotic state. These may form a systemic link between FL and the development of cardiovascular diseases

    Genome-wide association study on dimethylarginines reveals novel AGXT2 variants associated with heart rate variability but not with overall mortality

    Get PDF
    Aims The purpose of this study was to identify novel genetic variants influencing circulating asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels and to evaluate whether they have a prognostic value on cardiovascular mortality. Methods and results We conducted a genome-wide association study on the methylarginine traits and investigated the predictive value of the new discovered variants on mortality. Our meta-analyses replicated the previously known locus for ADMA levels in DDAH1 (rs997251; P = 1.4 × 10−40), identified two non-synomyous polymorphisms for SDMA levels in AGXT2 (rs37369; P = 1.4 × 10−40 and rs16899974; P = 1.5 × 10−38) and one in SLC25A45 (rs34400381; P = 2.5 × 10−10). We also fine-mapped the AGXT2 locus for further independent association signals. The two non-synonymous AGXT2 variants independently associated with SDMA levels were also significantly related with short-term heart rate variability (HRV) indices in young adults. The major allele (C) of the novel non-synonymous rs16899974 (V498L) variant associated with decreased SDMA levels and an increase in the ratio between the low- and high-frequency spectral components of HRV (P = 0.00047). Furthermore, the SDMA decreasing allele (G) of the non-synomyous SLC25A45 (R285C) variant was associated with a lower resting mean heart rate during the HRV measurements (P = 0.0046), but not with the HRV indices. None of the studied genome-wide significant variants had any major effect on cardiovascular or total mortality in patients referred for coronary angiography. Conclusions AGXT2 has an important role in SDMA metabolism in humans. AGXT2 may additionally have an unanticipated role in the autonomic nervous system regulation of cardiac functio

    Adulthood blood levels of hsa-miR-29b-3p associate with preterm birth and adult metabolic and cognitive health

    Get PDF
    Preterm birth (PTB) is associated with increased risk of type 2 diabetes and neurocognitive impairment later in life. We analyzed for the first time the associations of PTB with blood miRNA levels in adulthood. We also investigated the relationship of PTB associated miRNAs and adulthood phenotypes previously linked with premature birth. Blood MicroRNA profiling, genome-wide gene expression analysis, computer-based cognitive testing battery (CANTAB) and serum NMR metabolomics were performed for Young Finns Study subjects (aged 34-49 years, full-term n=682, preterm n=84). Preterm birth (vs. full-term) was associated with adulthood levels of hsa-miR-29b-3p in a fully adjusted regression model (p=1.90 x 10-4, FDR=0.046). The levels of hsa-miR-29b-3p were down-regulated in subjects with PTB with appropriate birthweight for gestational age (p=0.002, fold change [FC]=- 1.20) and specifically in PTB subjects with small birthweight for gestational age (p=0.095, FC=- 1.39) in comparison to individuals born full term. Hsa-miR-29b-3p levels correlated with the expressions of its target-mRNAs BCL11A and CS and the gene set analysis results indicated a target-mRNA driven association between hsa-miR-29b-3p levels and Alzheimer's disease, Parkinson's disease, Insulin signaling and Regulation of Actin Cytoskeleton pathway expression. The level of hsa-miR-29b-3p was directly associated with visual processing and sustained attention in CANTAB test and inversely associated with serum levels of VLDL subclass component and triglyceride levels. In conlcusion, adult blood levels of hsa-miR-29b-3p were lower in subjects born preterm. Hsa-miR-29b-3p associated with cognitive function and may be linked with adulthood morbidities in subjects born preterm, possibly through regulation of gene sets related to neurodegenerative diseases and insulin signaling as well as VLDL and triglyceride metabolism

    Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism : The Young Finns Study

    Get PDF
    MicroRNAs are involved in disease development and may be utilized as biomarkers. We investigated the association of blood miRNA levels and a) fatty liver (FL), b) lipoprotein and lipid pathways involved in liver lipid accumulation and c) levels of predicted mRNA targets in general population based cohort. Blood microRNA profiling (TaqMan OpenArray), genome-wide gene expression arrays and nuclear magnetic resonance metabolomics were performed for Young Finns Study participants aged 34-49 years (n = 871). Liver fat status was assessed ultrasonographically. Levels of hsa-miR-122-5p and -885-5p were up-regulated in individuals with FL (fold change (FC) = 1.55, p = 1.36 * 10-14 and FC = 1.25, p = 4.86 * 10-4, respectively). In regression model adjusted with age, sex and BMI, hsa-miR-122-5p and -885-5p predicted FL (OR = 2.07, p = 1.29 * 10-8 and OR = 1.41, p = 0.002, respectively). Together hsa-miR-122-5p and -885-5p slightly improved the detection of FL beyond established risk factors. These miRNAs may be associated with FL formation through the regulation of lipoprotein metabolism as hsa-miR-122-5p levels associated with small VLDL, IDL, and large LDL lipoprotein subclass components, while hsa-miR-885-5p levels associated inversely with XL HDL cholesterol levels. Hsa-miR-885-5p levels correlated inversely with oxysterol-binding protein 2 (OSBPL2) expression (r = -0.143, p = 1.00 * 10-4) and suppressing the expression of this lipid receptor and sterol transporter could link hsa-miR-885-5p with HDL cholesterol levels

    Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke

    Get PDF
    Asymmetric and symmetric dimethylarginines (ADMA and SDMA) impair nitric oxide bioavailability and have been implicated in the pathogenesis of atrial fibrillation (AF). Alanine-glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of metabolizing both of the dimethylarginines. We hypothesized that two functional AGXT2 missense variants (rs37369, V140I; rs16899974, V498L) are associated with AF and its cardioembolic complications. Association analyses were conducted using 1,834 individulas with AF and 7,159 unaffected individuals from two coronary angiography cohorts and a cohort comprising patients undergoing clinical exercise testing. In coronary angiography patients without structural heart disease, the minor A allele of rs16899974 was associated with any AF (OR = 2.07, 95% CI 1.59-2.68), and with paroxysmal AF (OR = 1.98, 95% CI 1.44-2.74) and chronic AF (OR = 2.03, 95% CI 1.35-3.06) separately. We could not replicate the association with AF in the other two cohorts. However, the A allele of rs16899974 was nominally associated with ischemic stroke risk in the meta-analysis of WTCCC2 ischemic stroke cohorts (3,548 cases, 5,972 controls) and with earlier onset of first-ever ischemic stroke (360 cases) in the cohort of clinical exercise test patients. In conclusion, AGXT2 variations may be involved in the pathogenesis of AF and its age-related thromboembolic complications.Peer reviewe
    corecore