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Abstract

Over the last few decades, breath analysis using electronic nose technology has

become a topic of intense research, as it is both non-invasive and painless, and is

suitable for point-of-care use. To date, however, only a few studies have examined

nasal air. As the air in the oral cavity and the lungs differs from the air in the nasal

cavity, it is unknown whether aspirated nasal air could be exploited with electronic

nose technology. Compared to traditional electronic noses, differential mobility

spectrometry uses an alternating electrical field to discriminate the different

molecules of gas mixtures, providing analogous information. This study reports the

collection of nasal air by aspiration and the subsequent analysis of the collected air

using a differential mobility spectrometer. We collected nasal air from ten volunteers

into breath collecting bags and compared them to bags of room air and the air

aspirated through the device. Distance and dissimilarity metrics between the sample

types were calculated and statistical significance evaluated with Kolmogorov-

Smirnov test. After leave-one-day-out cross-validation, a shrinkage linear

discriminant classifier was able to correctly classify 100% of the samples. The nasal

air differed (p < 0.05) from the other sample types. The results show the feasibility of

collecting nasal air by aspiration and subsequent analysis using differential mobility

spectrometry, and thus increases the potential of the method to be used in disease

detection studies.



1. Introduction

Volatile organic compounds (VOC) are potential biomarkers of diseases, and their

use in disease diagnostics has become a fast-growing field of research [1, 2]. A

sample of exhaled human breath usually contains between 200 and 300 VOCs [3, 4].

Moreover, the sampling of exhaled breath is a non-invasive, painless technique that

has potential for point-of-care use.

The gold standard method for VOC analysis is gas chromatography-mass

spectrometry (GC-MS), which can identify individual compounds in breath samples.

However, the method is expensive and requires experienced personnel to operate it.

An additional drawback of mass spectrometry is that it often requires selective

sampling, which limits the breadth of the molecules analyzed. In contrast to the GC-

MS sampling method, the electronic nose (eNose) analyzes VOCs qualitatively,

typically using an array of sensors that deliver a measurement signature, which could

represent the VOC pattern of a certain disease [2]. A pattern recognition algorithm is

then taught to discriminate different VOC patterns, and thus potentially discriminate

diseased patients from healthy ones. eNose devices are usually relatively compact

and they can perform a sample analysis in minutes. Indeed, eNose technology has

even been shown to outperform mass spectrometry.

Differential ion mobility spectrometry (DMS) - also known as field asymmetric ion

mobility spectrometry (FAIMS) - is a technique that uses an alternating electrical

field to discriminate the different molecules of a sample. Although DMS is not based

on sensor arrays, as is the case with traditional eNoses, it provides analogous

information on gas-phase molecules. The operating principle of DMS makes it less

prone to drifting and the batch-to-batch variation that has plagued many

semiconductor sensor-based eNoses [5]. In DMS, however, the molecules of the



sample need to be ionized. Although different ionization methods exist, not all

molecules can be ionized using one specific method. Therefore, DMS is selective to a

certain range of VOCs. Theoretical advantages of DMS over microscale FAIMS are

the longer residence time and the higher number of oscillations, which improves the

separation capacity of the system. A further theoretical advantage of DMS over drift

and travelling waves is the ability to perform continuous analysis compared to the

pulsed measurements of the other methods. The additional advantage of DMS and

FAIMS is that the method provides information on the behavior of molecules in high

and low fields [6].

Numerous studies have examined the application of eNose technology in disease

diagnostics with encouraging results. Classic asthma, for example, has been

distinguished from chronic obstructive pulmonary disease with a sensitivity of 91%

and a specificity of 90% [7]. Further, an ion mobility spectrometry-based eNose was

able to diagnose prostate cancer from urine with a sensitivity of 78% and a specificity

of 67% [8]. Using DMS analysis of urine samples, malignant ovarian tumors were

differentiated from healthy controls with a sensitivity of 91% and a specificity of

63% [9]. As reported in a review by Farraia et al. [10], many published studies use

exhaled breath as a sample material. We are, however, aware of only a few studies

that have investigated the use of nasal air with an eNose. In these studies, patients

exhaled through the nose, or the air was aspirated during normal respiration either

into a breath-collecting bag or into an eNose [11-14]. Thus, air from the lungs and the

pharynx could have affected the results since it is known that expiratory flow rate,

breath hold and the fraction of breath analyzed can alter the measurement signature of

the eNose [15, 16] and have a subsequent impact on the reproducibility of the

measurements.

To only examine nasal air, the sample should be collected using aspiration as

described by the American Thoracic Society and the European Respiratory Society

(ATS/ERS) in their guidelines for the measurement of nitric oxide (NO) [17]. The



aim of this study is therefore to report the collection and subsequent analysis of nasal

air using an electronic nose based on DMS technology.



2. Materials and methods

2.1 System for the aspiration of nasal air

The device used for the aspiration of nasal air was a suction pump SP 625 EC-LC-

DU (Spiggle & Theis Medizintechnik GmbH, Germany) operated with AA-batteries.

A metal Politzer nasal olive was inserted to the patient’s nostril and connected to the

pump with a Teflon tube. Another Teflon tube was used to connect the pump to a 750

ml GaSampler Single-Patient Collection Bag (Quintron Instrument Company Inc.

USA), which is a metalized polyester bag. Small pieces of silicone were then used to

connect the tubes to the pump.

To prevent contamination of the air from the pharynx, the soft palate must be closed.

Closure of the soft palate can be achieved by the patient blowing against a resistance

of at least 10 cm H2O as instructed by ATS/ERS [17]. In our study, a pressure of 15

cm H2O was chosen. This was simply performed by measuring 15 centimeters of tap

water into a plastic bottle and then asking the patient to blow bubbles in the water.

During the aspiration of nasal air, the blowing was supervised by a nurse.

When the pump is started, ambient air is entrained through the patient’s open nostril

and through the nasal cavity to the contralateral nostril connected with the nasal

olive. The seated patient inhales to total lung capacity and then begins to blow against

a resistance. At this point, the air in the nasal cavity and the Teflon tubes still

contains air from the pharynx. The total length of the Teflon tubes is approximately

500 mm with inner and outer diameters of 6 mm and 8 mm, respectively. Thus, the

total volume of the tubes is 14 ml. It has been estimated that the volume of each nasal

cavity is approximately 16 ml [18], resulting in a total volume in the nasal cavities

and Teflon tubes of approximately 46 ml. The pump can induce a flow of 192 ml/s

(11.52 l/min). Therefore, to clear contamination, the suction continues for 1 to 2

seconds while the soft palate is closed before the valve to the bag is opened.



It takes less than 10 seconds to fill the bag. Then, the valve is closed; the patient stops

blowing, and the pump is shut down. Each participant used two Teflon tubes which

were disposed of after taking the samples.

2.2 DMS device

The DMS device used in this study was the differential ion mobility spectrometer

prototype Ionvision (Olfactomics Ltd, Finland). The DMS electrode was 20 mm in

length, 8 mm in width, and the analytical gap was 0.25 mm. In DMS, the gas phase

molecules are ionized by 4.9 kV soft x-ray. The ions travel in buffer gas in a channel

formed by two electrodes, which create an oscillating electric field USV perpendicular

to the motion of the ions. At the end of the channel is a detector, which consists of a

Faraday plate connected to a transimpedance amplifier. The electric field has high-

and low-voltage phases that cause the ions to travel in a zig-zag motion. If the ions hit

the electrodes, they lose their charge before reaching the ion detector. To counter this

effect, a compensation voltage UCV is applied. At a certain electric field and

compensation voltage value, certain ions reach the detector and generate a pA-range

current signal that is detected. Scanning different electric fields and compensation

voltages creates a measurement signature that can be presented as a dispersion

matrix.

In this study, the samples were scanned with 60 evenly spaced USV values, ranging

from 200 V to 800 V, and 100 evenly spaced UCV values ranging from -1 V to 8 V.

Thus, the resultant dispersion field was 800 V/mm – 3.2 kV/mm. The measurement

was done simultaneously in positive and negative ion channels, resulting in data

vectors of 12 000 dimensions per each measurement in total. The data matrices along

with the measurement parameters are then saved as .json files by the DMS device.

2.3 Test participants

We recruited ten adult volunteers to the study. Exclusion criteria were as follows:

pregnancy or lactation, smoking during past month, chronic rhinosinusitis, prior



paranasal surgery, acute upper respiratory infection less than a week ago, any use of

nasal sprays during the past week, lower respiratory tract disease, such as COPD or

asthma, severe immunodeficiency, and any cancer diagnosed within the past five

years.

Of the ten participants, four were women and six were men. Mean age was 45 years

(range 33 to 64). All participants were able to provide a sample after one attempt. No

adverse effects were observed.

2.4 Collection and analysis of the samples

The samples were collected in the same room in the University Hospital to avoid any

variation from environmental factors. Each participant provided one nasal air sample

on two separate days, resulting in 20 nasal air samples. The collection of samples was

completed in five days. Every day, we collected a bag of room air for background

VOC comparison, resulting in five room air samples. The bags were connected to the

pump with a Teflon tube and a silicone connector in the same manner as the nasal air

sampling. However, the pump aspirated room air without having a nasal olive and

Teflon tube attached to the inflow port. To remove any VOCs left by the previous

participant, the pump was used to aspirate the room air for two minutes between

subjects. Each bag was then transported to a separate location and analyzed with the

DMS device within six hours, which is the maximum storing time according to the

manufacturer of the collection bags.

The collection bag was attached to the DMS device with Teflon tubes. Small pieces

of silicone were used between the connections of the tubes. We used a pneumatic

ejector VR 05 (Schmalz, Germany) to produce a vacuum for sampling from the bag.

Air flow from the sample bag was adjusted to 400 ml per minute with the Gilibrator-2

system (Sensidyne, FL, USA). Pressurized air was also used, and it was cleaned with

activated carbon and 5Å molecular sieves. It diluted the sample air to a ratio of 10:1.

Thus, total volumetric flow was 4.4 liters per minute. The DMS device can handle an



air flow of 3 liters per minute, so approximately 1.4 liters per minute were lost. Each

measurement lasted about 30 seconds, and each collection bag was measured three

times while connected to the device. Therefore, the analysis of one bag lasted

approximately 1.5 minutes. However, as the volume of the bags were 750 ml and the

flow rate was 400 ml per minute, the analysis cycle would require a volume of 1.2

liters. The flow from the sample was not, however, a constant 400 ml per minute

because of the potential resistance in the bags when the volume of air was

diminishing.

Between measurements of the bags, we measured the room air aspirated through the

DMS device. The measurement protocol is shown in figure 1. Of all the

measurements, there were 60 nasal air sample measurements and 43 measurements of

room air aspirated through the DMS device (termed: reference air). We also had 15

measurements of five bags of room air (termed: room air). However, one

measurement was accidentally deleted from the device history, leaving 14

measurements. The day-wise numbers of measurements are presented in table 1.



Figure 1. The measurement protocol of the air samples with the differential mobility

spectrometry device



Table 1. Number of each measurement type per day.

Measurement
day

Sample
type Day 1 Day 2 Day 3 Day 4 Day 5

total n per
sample type

Nasal air 15 9 12 12 12 60

Room air 3 2 3 3 3 14

Reference
air 9 7 8 8 11 43

Total n
per day 27 18 23 23 26

2.5 Data analysis

The data analysis was performed with a statistical software R [19] in RStudio

environment [20]. Packages caret [21], sda [22] and lsa [23] were utilized.

2.6 Data pre-processing

The DMS data were pre-processed by row-wise normalization to emphasize the

signals in the high-separation areas on the spectra (figure 2). Each row,

corresponding to a fixed USV value, was scaled between 0 and 1 using the minimum

and maximum value of the row. To avoid accidentally emphasizing background noise

in the low intensity rows, all values below the pre-defined noise threshold were

substituted with the global minimum of the spectra prior to the row-wise

normalization. The noise threshold was defined by plotting the histogram of all the

intensity data. When the histogram is visually inspected, a gaussian-shaped peak can

be observed at the smallest end of the histogram. This is considered to be normally

distributed background noise. The values below this visually chosen threshold were

substituted with the threshold value.



Figure 2. Averaged nasal measurements (negative side) before and after pre-

processing and normalization. In the row-normalization, “fragment-like” peaks on the

high USV  values are the result of the normalization technique.

pA: picoamperes

2.7 Repeatability verification

To make reliable inference from the DMS measurements, the measurements must be

repeatable. Thus, we need a method to compare the similarities and differences

between the measurements. In the case of high-dimensional multivariate data

(dimensionality d = 12 000), comparison of the measurements is not simple, and

traditional univariate testing approaches cannot be used. Therefore, to estimate the

repeatability and inter-class similarity of the DMS measurements, several difference

and similarity measures were used.

The resemblance of the measurements can be measured with distance metrics,

similarity metrics or dissimilarity measures. The distance between two identical

measurements is 0, and this distance increases as the measurements are further away



from each other in their feature space. The distance metric used in this study was

Euclidean distance, which is the distance between two p-dimensional data vectors x

and y, is defined as follows:

d(x, y) = ට෌ (𝑥𝑖 − 𝑦𝑖)²
𝑝
𝑖=1 (1)

In theory, the upper limit for the distance does not exist. In contrast, similarity

between two observations is 1 for identical observations and 0 for completely

different observations. To have a comparable “similarity” metric for distance, a

concept of dissimilarity (1-similarity) can be used. In this study, dissimilarity

versions of cosine similarity as well as Pearson’s and Spearman’s rank correlation

were used.

Our approach was to form an “archetype” for each sample type (nasal air, reference

air, room air). In practice, an averaged dispersion plot of each data type was used for

this (figure 3). In future studies, this kind of archetype could be used to calibrate the

measurement device and the setup. The distance or similarity metric between the new

measurements and the archetype can thus be calculated to see whether the new

measurements are within the accepted distance/similarity interval.

The effectiveness of this approach was tested by comparing the within-group

distances and dissimilarities to the between-group dissimilarities. The nasal air

sample data were used to form the archetypes. To avoid bias, a separate archetype

was calculated for the nasal air sample data of each measurement day, and the

distance was then calculated between the archetypes and each individual

measurement from the other days. The distributions of the within-group and the

between-group distances and dissimilarities were then compared.



The statistical significance of the findings was tested with Kolmogorov-Smirnov test,

which is a general non-parametric statistical test without any distribution

assumptions.

2.8 Principal component analysis

Principal component analysis (PCA) is a dimensionality reduction method, where the

data are linearly transformed into a feature space that maximizes the variance

observed in the data [24]. The first two principal components of the dataset are

visualized to illustrate how the data are naturally clustered.

2.9 Classification

Different classification approaches were utilized to find out whether the different

measurement clusters were distinguishable from each other. A commonly used way

to estimate a classifier’s generalization ability to unseen data is cross-validation

(CV). In CV, the dataset is divided into k mutually exclusive subsets, and each subset

is left out as an independent test set. The rest of the subsets are used to form the

model. The overall performance can then be estimated from the combined test results

of the subsets. If the measurements are independent, the subsets (folds) can be formed

by random split (k-fold CV), or each instance can even form a subset of its own (in

which case it is called leave-one-out CV, LOOCV). In our case, however, the

measurements are not independent: the measurement order, the measurement day and

the participant all compromise the independence. Thus, CV was performed by

dividing the data into day-wise or participant-wise folds.

Linear discriminant analysis (LDA) is a classification method, where the classes are

separated by hyperplanes maximizing the class separation. Due to the high

dimensionality of the data (d = 12 000), regularization is required. The regularized

version of LDA is shrinkage LDA (sLDA), which has previously been applied

successfully to classify DMS data [25, 26], and was used in this study, too.



Figure 3. The averaged dispersion plots of each sample type after pre-processing with

row-normalization technique. Reactant ion peak (a water peak) that resembles water

in the spectrum is shown with a white arrow.



3. Results

PCA decomposition creates insight into the inherent clustering of the data (figure 4).

The plots show that the nasal air measurements are distinguishable from the reference

and room air measurements, while the measurement day also affects the

measurements (figure 4a and 4b). In the nasal air data (figure 4c), it seems that even

though the three nasal air measurements from the same bag are usually observed

close together, there is no participant-wise clustering if the measurements of both

bags of the same participant are studied.

The leave-one-day-out cross-validation results of the sLDA classifier for the sample

types are shown in table 2. Each model was able to correctly classify 100% of the

out-of-sample data. This means that the data were perfectly linearly separable.

Discrimination between study participants with sLDA was cross-validated by a 2-fold

setup, where the first fold consisted of the first sample bags of each participant, and

the second fold contained the latter measurement bags. The discrimination rate was

13.3% and, as such, does not significantly differ from the guess level of 10%. Visual

assessment on the PCA plot (figure 4c) does not reveal significant clustering by a

participant.

The boxplots of the distance and the dissimilarity metrics between the data groups

and the nasal air sample archetype are shown in figure 5. The within-group distances

and dissimilarities were notably lower than the corresponding between-group metrics

in all cases. The differences between the distributions of the archetype class and the

other types were statistically significant on a 95% significance level in all cases.

Kolmogorov-Smirnov test showed statistically significance (p < 0.05) between all

sample types.



Figure 4. Two first principal components of a) the entire dataset, grouped by the

measurement type, b) the entire dataset, grouped by the measurement day and c) the

nasal air samples grouped by participants.



Table 2. Day-wise cross-validation results of the sample type classification with a

shrinkage linear discriminant analysis model.

True class

Nasal air Room air Reference air

Predicted
class

Nasal air 60 0 0

Room air 0 14 0

Reference air 0 0 43



Figure 5. The boxplots of the cross-validated distance and dissimilarity metrics

between the data groups and the nasal air sample archetype. The dissimilarity metrics

all have the same scale on the vertical axis, whereas the Euclidean distance has its

own, non-comparable scale.



The absolute humidity of the diluted sample types is shown in figure 6. Nasal air is

more humid than reference and room air but no larger than variance of the humidity

between measurement days. This is also illustrated by the visual intensity of a

reaction ion peak in figure 3.

Figure 6. Absolute humidity in diluted air showing variance between samples and

measurement days.



4. Discussion

In this study, we evaluated a method to collect and analyze nasal air that resembles

the ATS/ERS guidelines for the measurement of nasal NO. Data analysis showed that

nasal air, room air and reference air were clearly separable and established reference

intervals for measurements from healthy participants. As the participants were not

distinguishable from each other, there was no clustering of the data based on

individual characteristics but only by sample type.

     As we examined only healthy individuals, we do not know whether the analysis of

nasal air can distinguish patients with conditions from healthy ones. To our

knowledge, only a few studies have examined nasal air analysis in the diagnostics of

diseases with eNoses [11-14]. Mohamed et al. [11] collected nasal outbreath into

sterile plastic sacks from five chronic rhinosinusitis patients and five controls.

Patients inhaled through the mouth and exhaled through the nose to fill the sack. In

addition, the plastic sack contained a tampon that was first held in the middle meatus

of the patient's nose to stimulate mucosal secretions. The contents of the sack were

then analyzed using an eNose developed for research purposes (LibraNose,

University of Rome Tor Vergata and Technobiochip) that utilizes quartz crystal

microbalances covered with metalloporphyrins. The eNose had a sensitivity and

specificity of 60% after leave-one-out cross-validation. Thus, the results did not differ

much from the guess level of 50%. In the other study, breath samples from patients

with acute rhinosinusitis symptoms and controls were obtained using a modified

nasal CPAP mask that was connected to an eNose based on conducting polymer

sensors. After leave-one-out cross-validation, the eNose could diagnose bacterial

rhinosinusitis with an accuracy of 72% [12]. Both the aforementioned studies

examined exhaled nasal air coming directly from the lungs, the pharynx and the oral

cavity, which may have caused confusing results.  However, Steppert et al. had more

promising results in two recent pilot studies investigating nasal air with an IMS



coupled with a multicapillary column [13, 14]. In their first study, nasal air was

aspirated during normal respiration. Samples were collected from individuals with

confirmed influenza-A infection and then compared to persons with negative test

results and to healthy volunteers. Influenza-A-infected patients were distinguished

with perfect sensitivity and specificity [13]. Furthermore, the second study showed

that an analysis of exhaled nasal air from patients with SARS-CoV-2 infection could

be distinguished from patients with influenza-A infection and healthy controls with

accuracy of 97% after cross-validation [14].

We consider it crucial to investigate aspirated nasal air in studies concerning

rhinologic diseases to exclude confounding factors as much as possible. Guidelines

suggest the application of aspiration in the measurement of nasal NO [17], which is

also applicable for nasal air analysis. This method excludes sample contamination

with air originating from the lungs, the pharynx or the oral cavity, as it could affect

the VOC profile. For instance, Smith et al. [27] examined ammonia levels in breath

air and found that levels are significantly less in nose-exhaled breath than mouth-

exhaled breath. The same applies for ethanol and hydrogen cyanide [28]. Because ion

mobility spectrometry is sensitive for these compounds, they could cause significant

bias if left unchecked [29-31]. Therefore, an analysis of nasal air could reduce

contamination by endogenous VOCs that originate in the oral cavity. In exhaled

breath sampling, VOCs depend on which portion of breath is analyzed. Alveolar

samples, for example, show different VOCs than mixed expiratory samples [15].

Also, expiratory flow rate and breath hold influence the eNose pattern [16].

Aspiration of the nasal air does not suffer from these problems. However, one should

note the potential confounding factors of aspiration. First, we did not measure nasal

CO2 , which, when remaining low, would verify the closure of the soft palate.

Nevertheless, blowing against resistance of a minimum of 10 cm H2O is approved to

be adequate [17]. Second, the flow of the air was not measured, and it could be

affected by nasal aerodynamics. As the batteries of the pump were running out, a



reduction in the flow of the air was observed. Measurements of nasal NO suggest a

targeted airflow, otherwise the values of NO are affected [17]. Similarly, the signal

patterns of the eNose could be altered.

     Many patient-related factors can affect the breath analysis regardless of whether

the sample is collected through the mouth or the nose. For example, the consumption

of certain foods can affect VOCs [32]. Some studies even advocate fasting before

sample collection [7, 33, 34], but the role of fasting or diet on VOCs is unclear [35].

Moreover, we are unaware of any previous studies that have compared the effects of

diet on the nasal and oral sampling of air. Other possible covariates that alter VOCs

include age, gender, smoking status, and comorbid diseases. However, controversy

exists as to which of these covariates should be adjusted for breath analysis [4, 34,

36-39]. Also, medication, such as nasal sprays, could affect the VOC profile. Indeed,

nasal decongestants and corticosteroid sprays have been shown to decrease nasal NO

[40-42]. In our study, we advised the volunteers to refrain from using their nasal

sprays for a week prior to sample collection, but a shorter period would probably

have been sufficient. However, corticosteroid sprays have a prolonged effect on

inflammation, and the time the sprays take to wear-off is unknown.

Room air is a source of exogenous VOCs that might interfere with the results. A

typical way to exclude the impact of room air is to use an inspiratory VOC filter and

to rinse the patient's lungs with filtered air [43]. In our study, this would have

demanded the use of a filter attached to the patient's open nostril. To our knowledge,

it is not known how much time would be enough to rinse the nasal cavity with

purified air. As we used an estimate of 32 ml for the volume of both nasal cavities

[18], we expect that a few seconds of aspiration would replace the room air in the

nasal cavity with purified air. Nevertheless, one should note that use of a clean air

supply might be an additional confounding factor since it might reduce

concentrations of likely endogenous VOCs and increase exogenous [44].

Furthermore, breath collection devices can release contaminant VOCs [45], which



also applies to our pump. Therefore, if one would want to eliminate its effect, an

airtight container should be used. The container has the sampling bag inside and two

airtight ports. One port connects to a pump outside the container and the other to a

bag to supply sample air from the patient via a tube. When the pump is turned on, the

air in the container is drawn out, which produces a differential pressure, and air is

then drawn into the bag via the port from the patient's nose. This method would not,

however, allow cleaning of the nasal cavity from air of the oral cavity while the

patient is blowing against resistance at the beginning of nasal air aspiration. In

addition to the pump, the tubes are also a potential source of contamination. In the

present study, we used Teflon tubes which were disposed of after the test. Teflon is a

suitable material due to it being inert and is suitable for use with the eNose [46].

Teflon is, however, quite rigid and requires more adjustment with the pump

compared to silicone.

It should be borne in mind that in the present study air samples were stored in the

collection bags. Previous studies have shown that VOCs adsorb from bags over time,

which affects the storing time [47, 48]. Therefore, we analyzed all samples as quickly

as possible and within at least 6 hours, as instructed by the manufacturer of the bags.

Furthermore, we did not re-use the collection bags, although with cleaning protocols

it would have been possible and would have reduced costs [48, 49]. However,

cleaning may still fail to remove some compounds [50]. During the analysis of the

bags with the DMS device, the flow from the sample was set to 400 ml per minute,

but the resistance in the bags during emptying varied and affected the flow rate.

Therefore, clean air was most likely present in different volumes in the three

measurements of the one bag. This did not, however, seem to have a significant effect

since the PCA composition shows that the measurements are usually close to each

other.

Since some environmental factors, such as temperature, humidity and air quality,

cannot always be controlled in a clinical setup, they can be expected to affect the



DMS measurements in some way. The DMS is sensitive to humidity and therefore

measurements of the same compound in different humidity levels might produce

different results. However, the air in the nasal cavity is saturated to between 90% and

100% [51, 52]. Therefore, changes in the humidity of room air supposedly does not

significantly affect the measurements of nasal air. The measurement device itself can

also produce dynamically changing baseline noise to the measurements due to system

stabilization. The changes in the baseline can be compensated by using various

normalization methods. The row-wise normalization used in this study highlights the

higher parts of the DMS dispersion matrices, where the peak separation is the highest

but the signal is the weakest. With this method, the sample types became perfectly

linearly separable.

A potential reason for the separability of nasal air from the reference and room air is

that nasal air contains endogenous VOCs and the concentration of some VOCs of the

room air might change during the air flow through the nasal cavity. Most importantly,

the air is humidified in the nasal cavity during aspiration to the collection bag. As

seen from the figure 6, nasal air is more humid than other samples but the humidity

also varies greatly between measurement days. Although the reaction ion peak that

resembles water in the spectrum differs between different sample types, there is

significant variation caused by other compounds in other areas of the spectrum as

well (figure 3). Because the measurement device was located in a different location

compared to the collection of the nasal air and room air samples (hospital

environment), the VOCs in the reference air were different, which may explain the

differences in the box plots. Although we recognize that the strength of our study is

limited by the small sample size, the study still manages to achieve good, unbiased

results despite this limitation.

The data analysis also had possible bias factors. The most obvious bias factor results

from the nasal air sample bags, each of which were measured three times on the same



day. They are expected to be highly similar to each other, and this is also supported

by the PCA transformation of the nasal air data, where the measurements from the

same bag are usually observed close together. Furthermore, the measurement order of

the different samples (figure 1) was always the same and could therefore cause bias

and affect the distances and classification results. Another factor is the measurement

day. The measurement conditions during a measurement session are similar between

measurements, which is why measurements from the same session tend to cluster

together. Thus, to avoid bag-wise and day-wise bias, the cross-validation was

performed by leaving each day as a test set at a time. However, since the nasal air of

each participant was measured twice on separate days, each test day contained data

from the same participants that were also present in the training data. Even though the

participant-wise measurements did not form participant-wise clusters in the visual

inspection of the PCA, this is still a possible bias factor in the sLDA classification.

However, since the measurement types did not differ significantly between days, this

is unlikely to be a great disadvantage.

The distance comparisons show that the distance and dissimilarity metrics, especially

Euclidean distance where the relative differences between the archetype group and

the other groups are most prominent, could be used to study the repeatability of the

DMS data and in device calibration. The absolute values of the Euclidean distances

cannot be directly compared to the dissimilarities since the scales differ. However, as

Euclidean distance is widely used in different fields and it is intuitively simple to

understand, we recommend its use. Moreover, all the presented metrics are

computationally cheap to evaluate.

Breath analysis for disease detection is an exciting and promising field of research.

Although it is important to find disease-specific biomarkers using, e.g., mass

spectrometry, the qualitative analysis of breath based on pattern recognition better

suits fast and cheap point-of-care use. As there is a lack of standardization in breath



sampling, we evaluated a method that is similar to the validated method for the

measurement of nasal NO to diminish confounding factors. We believe that this kind

of approach is suitable for use in the diagnostics of rhinologic diseases, such as acute

and chronic rhinosinusitis, allergic rhinitis and sinonasal cancers.



5. Conclusion

Although numerous studies on exhaled breath analysis exist, this is the first study to

examine the eNose analysis of aspirated nasal air with soft velum closed. The study

shows that the concept of collecting nasal air into a breath collecting bag by

aspiration and the subsequent analysis of the nasal air using DMS works well. Indeed,

DMS distinguishes sample types perfectly but the difference in the humidity of the

samples might contribute to the results. We believe that the analysis of aspirated

nasal air with DMS brings more potential for the use of the method in disease

detection studies.
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