4,342 research outputs found

    Deep Learning in Medical Image Analysis

    Get PDF
    The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements

    Group Analysis of the Novikov Equation

    Full text link
    We find the Lie point symmetries of the Novikov equation and demonstrate that it is strictly self-adjoint. Using the self-adjointness and the recent technique for constructing conserved vectors associated with symmetries of differential equations, we find the conservation law corresponding to the dilations symmetry and show that other symmetries do not provide nontrivial conservation laws. Then we investigat the invariant solutions

    Theory of nonlinear Landau-Zener tunneling

    Full text link
    A nonlinear Landau-Zener model was proposed recently to describe, among a number of applications, the nonadiabatic transition of a Bose-Einstein condensate between Bloch bands. Numerical analysis revealed a striking phenomenon that tunneling occurs even in the adiabatic limit as the nonlinear parameter CC is above a critical value equal to the gap VV of avoided crossing of the two levels. In this paper, we present analytical results that give quantitative account of the breakdown of adiabaticity by mapping this quantum nonlinear model into a classical Josephson Hamiltonian. In the critical region, we find a power-law scaling of the nonadiabatic transition probability as a function of C/V1C/V-1 and α\alpha , the crossing rate of the energy levels. In the subcritical regime, the transition probability still follows an exponential law but with the exponent changed by the nonlinear effect. For C/V>>1C/V>>1, we find a near unit probability for the transition between the adiabatic levels for all values of the crossing rate.Comment: 9 figure

    Deglacial release of petrogenic and permafrost carbon from the Canadian Arctic impacting the carbon cycle

    Get PDF
    AbstractThe changes in atmospheric pCO2 provide evidence for the release of large amounts of ancient carbon during the last deglaciation. However, the sources and mechanisms that contributed to this process remain unresolved. Here, we present evidence for substantial ancient terrestrial carbon remobilization in the Canadian Arctic following the Laurentide Ice Sheet retreat. Glacial-retreat-induced physical erosion of bedrock has mobilized petrogenic carbon, as revealed by sedimentary records of radiocarbon dates and thermal maturity of organic carbon from the Canadian Beaufort Sea. Additionally, coastal erosion during the meltwater pulses 1a and 1b has remobilized pre-aged carbon from permafrost. Assuming extensive petrogenic organic carbon oxidation during the glacial retreat, a model-based assessment suggests that the combined processes have contributed 12 ppm to the deglacial CO2 rise. Our findings suggest potentially positive climate feedback of ice-sheet retreat by accelerating terrestrial organic carbon remobilization and subsequent oxidation during the glacial-interglacial transition.</jats:p

    Combinatorial RNA Design: Designability and Structure-Approximating Algorithm

    Get PDF
    In this work, we consider the Combinatorial RNA Design problem, a minimal instance of the RNA design problem which aims at finding a sequence that admits a given target as its unique base pair maximizing structure. We provide complete characterizations for the structures that can be designed using restricted alphabets. Under a classic four-letter alphabet, we provide a complete characterization of designable structures without unpaired bases. When unpaired bases are allowed, we provide partial characterizations for classes of designable/undesignable structures, and show that the class of designable structures is closed under the stutter operation. Membership of a given structure to any of the classes can be tested in linear time and, for positive instances, a solution can be found in linear time. Finally, we consider a structure-approximating version of the problem that allows to extend bands (helices) and, assuming that the input structure avoids two motifs, we provide a linear-time algorithm that produces a designable structure with at most twice more base pairs than the input structure.Comment: CPM - 26th Annual Symposium on Combinatorial Pattern Matching, Jun 2015, Ischia Island, Italy. LNCS, 201

    Multiagent Consensus Control under Network-Induced Constraints

    Get PDF
    Mean consensus problem is studied using a class of discrete time multiagent systems in which information exchange is subjected to some network-induced constraints. These constraints include package dropout, time delay, and package disorder. Using Markov jump system method, the necessary and sufficient condition of mean square consensus is obtained and a design procedure is presented such that multiagent systems reach mean square consensus

    Rationale of Endoscopic Spine Surgery: A New Paradigm Shift In Spine Surgery From Patient’s benefits to Public Interest In This New Era of Pandemic

    Get PDF
    Advancement of technology and surgical skills act in synergy to lead to exploration of new solutions in spine surgery. One of the key areas of spine innovation is endoscopic spine surgery and its application to a broader spectrum of conditions with the aim of reducing perioperative morbidities, soft tissue and bony conservation and yet achieving long term target outcomes of gold standard traditional open spine surgery. Twenty first century marks the new century of opportunities and challenges, in the face of threat of Coronavirus pandemic and difficult circumstances in hospital bed management and limitation in medical resources, minimally invasiveness is evolving from individual patients’ benefits to public interest

    Average Consensus Analysis of Distributed Inference with Uncertain Markovian Transition Probability

    Get PDF
    The average consensus problem of distributed inference in a wireless sensor network under Markovian communication topology of uncertain transition probability is studied. A sufficient condition for average consensus of linear distributed inference algorithm is presented. Based on linear matrix inequalities and numerical optimization, a design method of fast distributed inference is provided
    corecore