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The average consensus problem of distributed inference in a wireless sensor network underMarkovian communication topology of
uncertain transition probability is studied. A sufficient condition for average consensus of linear distributed inference algorithm is
presented. Based on linearmatrix inequalities andnumerical optimization, a designmethod of fast distributed inference is provided.

1. Introduction

During the past few decades, consensus problems of multia-
gent systems by information exchange have been extensively
studied by many researchers, due to their widespread appli-
cations in autonomous spacecraft, unmanned air vehicles,
mobile robots, and distributed sensor networks. Olfati-Saber
and Murray introduced in [1, 2] a theoretical framework for
solving consensus problems. In [3, 4], consensus problems of
first-order integrator systemswere proposed based on algebra
graph theory. In [5, 6], consensus problems of directed
second-order systems were presented. In [5], the authors pro-
vided necessary and sufficient condition for reaching mean
square consensus of discrete-time second order systems.
Consensus conditions were studied in [6] of continuous-
time second order systems by LinearMatrix Inequality (LMI)
approach.

Among consensus problems, the average consensus prob-
lem is challenging which requires distributed computation
of the average of the initial state of a network [1, 2]. For
a strongly connected network, [1] proved that the average
consensus problem is solvable if and only if the network
is balanced. The discrete-time average consensus plays a
key role in distributed inference in sensor networks. In
networks of fixed topology, [7] gave necessary and sufficient
conditions for linear distributed inference to achieve aver-
age consensus. A design method was presented in [7] to

implement linear distributed inference of fastest consensus.
Because of noisy communication channels, link failures often
occur in a real network. Therefore, it is meaningful to study
distributed inference in networks of swing topology.Through
a common Lyapunov function, a result of [1] stated that
distributed inference reaches average consensus in a network
of swing topology if the network holds strongly connected
and balanced topology. Reference [8] modeled a network
of swing topology using a Bernoulli process and established
a necessary and sufficient condition for average consensus
of distributed inference. The condition is related to a mean
Laplacian matrix.

The Bernoulli process in [8] means that the network
link failure events are temporally independent. From the
viewpoint of engineering, it is more reasonable to consider
network link failures of temporal independence. The most
famous and most tractable stochastic process of temporal
independence is Markovian chain in which any future event
is independent of the past events and depends only on
the present event. This motivates us to model a network
of swing topology using a Markovian chain and hence to
study distributed inference using Markovian jump linear
system method [9–12]. In practice, transition probabilities
of a Markovian chain are not known precisely a priori, and
only estimated values of transition probabilities are available.
Hence, this paper thinks of networks with Markovian com-
munication of uncertain transition probability.
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In fact, in the research on networked control systems,
Markovian chain has been used by several authors to
describe random communication in networks. Reference
[13] provided packet-loss model by Markovian chain in
𝐻
∞

networked control. Under network communication of
update times driven by Markovian chain, [14] gave stabil-
ity conditions of model-based networked control systems.
Networked control systems with bounded packet losses and
transmission delays aremodeled throughMarkovian chain in
[15].The networked predictive control system in [16] adopted
2 Markovian chains to express date transmission in both
the controller-actuator channel and the sensor-controller
channel.

In this paper,Z is used to denote the set of all nonnegative
integers.The real identitymatrix of 𝑛×𝑛 is denoted by 𝐼

𝑛
. Let 1

be the vector whose elements are all equal to 1.The Euclidean
norm is denoted by ‖ ∙ ‖. If a matrix 𝑃 is positive (negative)
definite, it is denoted by 𝑃 > 0(<0). The notation ⋇ within
a matrix represents the symmetric term of the matrix. The
expected value is represented by 𝐸[∙].

The paper is organized as follows. Section 2 contains
a description of the network and linear distributed infer-
ence. Section 3 presents average consensus conditions and a
designmethod.Numerical simulation results are in Section 4.
Finally, Section 5 draws conclusions.

2. Network Description

Consider distributed inference in a wireless sensor network
consisting of 𝑛 sensor. Each sensor 𝑖 ∈ 𝑁 ≜ {1, 2, . . . , 𝑛}

collects a local measurement 𝑦
𝑖
∈ R about the situation of

environment. It is assumed that these local measurements
𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
are independent and identically distributed

random variables. The goal of inference is for all sensors to
reach the global measurement

𝑦 =
1

𝑛

𝑛

∑

𝑖=1

𝑦
𝑖

(1)

such that the true situation of environment can be monitored
convincingly.

This paper studies iterative distributed inference. Define

𝑈 = {(𝑠, 𝑡) | 𝑠 < 𝑡, 𝑠 ∈ 𝑁, 𝑡 ∈ 𝑁} (2)

which includes all realizable undirected links in the wireless
sensor network. At the 𝑘th iteration 𝑘 ∈ Z, the successful
communication links in the wireless sensor network are
described by the set

𝐸 (𝑘) ⊂ 𝑈. (3)

A pair (𝑠
1
, 𝑡
1
) ∈ 𝐸(𝑘) means that the sensors 𝑠

1
and 𝑡

1

communicate with each other at 𝑘. A pair (𝑠
2
, 𝑡
2
) ∈ 𝑈

but (𝑠
2
, 𝑡
2
) ∉ 𝐸(𝑘) means that there is no communication

link between the sensors 𝑠
2
and 𝑡

2
at 𝑘. Due to noisy

communication channels and limited network power budget,
𝐸(𝑘) is assumed to be random and to be modeled as follows.
Given 𝑚 distinct subsets 𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑚
⊂ 𝑈. Let 𝜃

𝑘
be

a stochastic process taking values in 𝑀 = {1, 2, . . . , 𝑚} and
driven by aMarkov chain with a transition probability matrix
Γ = [𝛾

ℎ𝑙
] ∈ R𝑚×𝑚, where 𝛾

ℎ𝑙
= Pr(𝜃

𝑘+1
= 𝑙 | 𝜃

𝑘
= ℎ), for all

ℎ ∈ 𝑀, for all 𝑙 ∈ 𝑀. However, these 𝛾
ℎ𝑙
s are not known

precisely. Each 𝛾
ℎ𝑙
is expressed as

𝛾
ℎ𝑙
= 𝛾
ℎ𝑙
+ Δ𝛾
ℎ𝑙
, (4)

with a known 𝛾
ℎ𝑙
and a unknownΔ𝛾

ℎ𝑙
whose absolute value is

less than a given positive constant 2𝜋
ℎ𝑙
. For any for all ℎ ∈ 𝑀,

∑
𝑚

𝑙=1
𝛾
ℎ𝑙
= 1 and ∑𝑚

𝑙=1
Δ𝛾
ℎ𝑙
= 0. This paper models

𝐸 (𝑘) = 𝐹
𝜃𝑘
. (5)

The neighborhood of sensor 𝑖 at 𝑘 is denoted by

Ω
𝑖
(𝑘) = {𝑗 ∈ 𝑁 | (𝑖, 𝑗) ∈ 𝐹

𝜃𝑘
or (𝑗, 𝑖) ∈ 𝐹

𝜃𝑘
} , (6)

and the element number of set Ω
𝑖
(𝑘) is denoted by 𝑑

𝑖
(𝑘).

For sensor 𝑖, set its initial state 𝑥
𝑖
(0) = 𝑦

𝑖
. At the

𝑘th iteration, each sensor 𝑖 obtains its neighbors’ states and
updates its state using the following linear iteration law:

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + 𝛼 ∑

𝑗∈Ω𝑖(𝑘)

(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) ,

𝑖 ∈ 𝑁,

(7)

where 𝛼 > 0 is the weight parameter which is assigned
by designers. Our study on the above distributed inference
has two objectives: one is to derive a condition on the
convergence of 𝑥

𝑖
(𝑘) to 𝑦 in the sense of mean square; the

other is how to find 𝛼 such that a fast convergence is achieved.

3. Average Consensus Analysis

3.1. Convergence Condition. Denote

𝑥 (𝑘) =

[
[
[
[

[

𝑥
1
(𝑘)

𝑥
2
(𝑘)

...
𝑥
𝑛
(𝑘)

]
]
]
]

]

∈ R
𝑛

. (8)

The system in Section 2 can be described as

𝑥 (𝑘 + 1) = 𝑊(𝛼, 𝜃
𝑘
) 𝑥 (𝑘) , 𝑘 ∈ Z,

𝑥 (0) = [𝑦
1
𝑦
2
⋅ ⋅ ⋅ 𝑦
𝑛
]
𝑇

,

(9)

where𝑊(𝛼, 𝜃
𝑘
) is a 𝑛 × 𝑛 matrix with entries 𝑤

𝑖𝑗
(𝛼, 𝜃
𝑘
). For

𝑖 ̸= 𝑗,

𝑤
𝑖𝑗
(𝛼, 𝜃
𝑘
) = {

𝛼, when 𝑗 ∈ Ω
𝑖
(𝑘)

0, when 𝑗 ∉ Ω
𝑖
(𝑘)
. (10)

For 𝑖 = 𝑗,

𝑤
𝑖𝑖
(𝛼, 𝜃
𝑘
) = 1 − 𝛼𝑑

𝑖
(𝑘) . (11)
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Figure 1: Three communication situations.
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Figure 2: Graph of 𝜌(𝛼).
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Figure 3: State curve when 𝛼opt = 0.4812.

From (2)∼(6), it is seen that 𝑖 ∈ Ω
𝑗
(𝑘) if and only if 𝑗 ∈ Ω

𝑖
(𝑘),

and hence

𝑊(𝛼, 𝜃
𝑘
) = 𝑊

𝑇

(𝛼, 𝜃
𝑘
) . (12)

Furthermore, (10)∼(12) imply that for all 𝑘 ∈ Z

1𝑇𝑊(𝛼, 𝜃
𝑘
) = 1𝑇,

𝑊 (𝛼, 𝜃
𝑘
) 1 = 1.

(13)
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Figure 4: State curve when 𝛼
1
= 0.5528.
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Figure 5: State curve when 𝛼
2
= 0.5359.

Then, we have

𝑊(𝛼, 𝜃
𝑘
) 𝑦1 = 𝑦𝑊(𝛼, 𝜃

𝑘
) 1 = 𝑦1, (14)

1

𝑛
11𝑇𝑥 (𝑘 + 1) = 1

𝑛
11𝑇𝑊(𝛼, 𝜃

𝑘
) 𝑥 (𝑘) =

1

𝑛
11𝑇𝑥 (𝑘) ,

(15)

which means that for all 𝑘 ∈ Z
1

𝑛
11𝑇𝑥 (𝑘) = 1

𝑛
11𝑇𝑥 (𝑘 − 1) = ⋅ ⋅ ⋅ = 1

𝑛
11𝑇𝑥 (0) = 𝑦1.

(16)
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Denote 𝑒(𝑘) = 𝑥(𝑘) − 𝑦1. The iterative distributed inference
is said to be average consensus in mean square sense if
lim
𝑘→∞

𝐸[‖𝑒(𝑘)‖
2

] = 0 for any initial condition 𝑥(0) ∈ R𝑛

and 𝜃
0
∈ 𝑀.

Theorem 1. The linear distributed inference (7) reaches aver-
age consensus by choice of 𝛼, if there exist m positive definite
matrices 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
∈ R𝑛×𝑛 such that for all ℎ ∈ 𝑀

𝑄
𝑇

(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
+

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼
𝑛
)𝑄 (𝛼, ℎ) + 𝑄

𝑇

(𝛼, ℎ)

×

𝑚

∑

𝑙=1

(𝑃
ℎ
− 𝑃
𝑙
)
2

𝑄 (𝛼, ℎ) − 𝑃
ℎ
< 0

(17)

with 𝑄(𝛼, ℎ) = 𝑊(𝛼, ℎ) − 1/𝑛11𝑇.

Proof. Assume 𝜃
𝑘
= ℎ ∈ 𝑀 at time step 𝑘. From (9), (14), and

(16), one has

𝑒 (𝑘 + 1) = 𝑥 (𝑘 + 1) − 𝑦1

= 𝑊(𝛼, ℎ) 𝑥 (𝑘) − 𝑊 (𝛼, ℎ) 𝑦1 − 1
𝑛
11𝑇𝑥 (𝑘) + 𝑦1

= 𝑊(𝛼, ℎ) 𝑥 (𝑘) − 𝑊 (𝛼, ℎ) 𝑦1 − 1
𝑛
11𝑇𝑥 (𝑘)

+
1

𝑛
11𝑇𝑦1

= (𝑊(𝛼, ℎ) −
1

𝑛
11𝑇) (𝑥 (𝑘) − 𝑦1)

= 𝑄 (𝛼, ℎ) 𝑒 (𝑘) .

(18)

We now consider the stochastic Lyapunov function

𝑉 (𝑒 (𝑘) , 𝜃
𝑘
) = 𝑒
𝑇

(𝑘) 𝑃
𝜃𝑘
𝑒 (𝑘) . (19)

Then for all 𝜃
𝑘
= ℎ ∈ 𝑀, we have

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃
𝑘+1
| 𝑒 (𝑘) , 𝜃

𝑘
)] − 𝑉 (𝑒 (𝑘) , 𝜃

𝑘
)

= 𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
𝑄 (𝛼, ℎ) − 𝑃

ℎ
)𝑒 (𝑘)

= 𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

(𝛾
ℎ𝑙
+Δ𝛾
ℎ𝑙
) 𝑃
𝑙
𝑄 (𝛼, ℎ)−𝑃

ℎ
)𝑒 (𝑘)

= 𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
𝑄 (𝛼, ℎ) + 𝑄

𝑇

(𝛼, ℎ)

× (

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

Δ𝛾
ℎ𝑙
𝑃
𝑙
+ Δ𝛾
ℎℎ
𝑃
ℎ
)

×𝑄 (𝛼, ℎ) − 𝑃
ℎ
)𝑒 (𝑘)

= 𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
𝑄 (𝛼, ℎ)

+ 𝑄
𝑇

(𝛼, ℎ)(

𝑚

∑

𝑙=1,𝑙 ̸= ℎ

Δ𝛾
ℎ𝑙
𝑃
𝑙
−

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

Δ𝛾
ℎ𝑙
𝑃
ℎ
)

×𝑄 (𝛼, ℎ) − 𝑃
ℎ
)𝑒 (𝑘)

= 𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
𝑄 (𝛼, ℎ)

+ 𝑄
𝑇

(𝛼, ℎ)(

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

Δ𝛾
ℎ𝑙
(𝑃
𝑙
− 𝑃
ℎ
))

×𝑄 (𝛼, ℎ) − 𝑃
ℎ
)𝑒 (𝑘)

≤ 𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
𝑄 (𝛼, ℎ)

+ 𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

(
1

4
Δ𝛾
2

ℎ𝑙
𝐼
𝑛
+ (𝑃
𝑙
− 𝑃
ℎ
)
2

)

×𝑄 (𝛼, ℎ) − 𝑃
ℎ
)𝑒 (𝑘)

≤ 𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
𝑄 (𝛼, ℎ)

+ 𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

(𝜋
2

ℎ𝑙
𝐼
𝑛
+ (𝑃
𝑙
− 𝑃
ℎ
)
2

)

×𝑄 (𝛼, ℎ) − 𝑃
ℎ
)𝑒 (𝑘)

≤ 𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
+

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼
𝑛
)𝑄 (𝛼, ℎ)

+𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

(𝑃
𝑙
− 𝑃
ℎ
)
2

𝑄 (𝛼, ℎ) − 𝑃
ℎ
)𝑒 (𝑘) .

(20)

Denote

Θ
ℎ
= 𝑄
𝑇

(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
+

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼
𝑛
)𝑄 (𝛼, ℎ)

+ 𝑄
𝑇

(𝛼, ℎ)

𝑚

∑

𝑙=1

(𝑃
ℎ
− 𝑃
𝑙
)
2

𝑄 (𝛼, ℎ) − 𝑃
ℎ
.

(21)

When the conditions inTheorem 1 are satisfied, we have

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃
𝑘+1
| 𝑒 (𝑘) , 𝜃

𝑘
)] − 𝑉 (𝑒 (𝑘) , 𝜃

𝑘
)

≤ −𝜆min (−Θℎ) ‖𝑒 (𝑘)‖
2

≤ −𝜂‖𝑒 (𝑘)‖
2

,

(22)

where 𝜆min(−Θℎ) denotes theminimal eigenvalue of−Θ
ℎ
and

𝜂 = inf {𝜆min (−Θℎ) , ℎ ∈ 𝑀} . (23)
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Therefore, for all 𝑒(0) ∈ R𝑛, for all 𝜃
0
∈ 𝑀, for all 𝑇 ∈ Z,

𝑇

∑

𝑘=0

𝐸 [‖𝑒 (𝑘)‖
2

] ≤
1

𝜂

𝑇

∑

𝑘=0

(𝐸 [𝑉 (𝑒 (𝑘) , 𝜃
𝑘
)]

−𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃
𝑘+1
)])

≤
1

𝜂
(𝑉 (𝑒 (0) , 𝜃

0
) − 𝐸 [𝑉 (𝑒 (𝑇 + 1) , 𝜃

𝑇+1
)])

≤
1

𝜂
𝑉 (𝑒 (0) , 𝜃

0
) .

(24)

This means lim
𝑘→∞

𝐸[‖𝑒(𝑘)‖
2

] = 0.

3.2. Optimal Design. From the above proof, it is seen that
the conditions in Theorem 1 result in not only lim

𝑘→∞
𝐸 [‖

𝑒(𝑘)‖
2

] = 0 but also decreasing 𝐸[𝑉(𝑒(𝑘), 𝜃
𝑘
)]. Moreover,

lim
𝑘→∞

𝐸[‖ 𝑒(𝑘)‖
2

] = 0 implies lim
𝑘→∞

𝐸[𝑉(𝑒(𝑘), 𝜃
𝑘
)] = 0;

that is, 𝐸[𝑉(𝑒(𝑘), 𝜃
𝑘
)] also converges to zero. Therefore, the

decrease rate of 𝐸[𝑉(𝑒(𝑘), 𝜃
𝑘
)] can express the convergence

speed of distributed inference. The following theorem is
about the decrease rate of 𝐸[𝑉(𝑒(𝑘), 𝜃

𝑘
)].

Theorem 2. Given 𝛼 > 0 and 𝜌 ∈ R, if there exist m positive
definite matrices 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑚
∈ R𝑛×𝑛 such that for all ℎ ∈ 𝑀,

[
[
[
[
[
[
[

[

𝑄
𝑇

(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
+

𝑚

∑

𝑙=1, 𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼
𝑛
)𝑄 (𝛼, ℎ) − (1 + 𝜌) 𝑃

ℎ
⋇

(𝑃
ℎ
− 𝑃
1
) 𝑄 (𝛼, ℎ)

... −𝐼
𝑚𝑛

(𝑃
ℎ
− 𝑃
𝑚
) 𝑄 (𝛼, ℎ)

]
]
]
]
]
]
]

]

< 0, (25)

then in linear distributed inference (7), for any nonzero 𝑒(𝑘) ∈
R𝑛,

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃
𝑘+1
)] − 𝐸 [𝑉 (𝑒 (𝑘) , 𝜃

𝑘
)]

𝐸 [𝑉 (𝑒 (𝑘) , 𝜃
𝑘
)]

< 𝜌. (26)

Proof. According to Schur complement [17], condition (25)
can be rewritten as

𝑄
𝑇

(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
+

𝑚

∑

𝑙=1,𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼
𝑛

+

𝑚

∑

𝑙=1

(𝑃
ℎ
− 𝑃
𝑙
)
2

)𝑄 (𝛼, ℎ) − (1 + 𝜌) 𝑃
ℎ
< 0.

(27)

From (27), for any nonzero 𝑒(𝑘) ∈ R𝑛, one has

𝑒
𝑇

(𝑘)(𝑄
𝑇

(𝛼, ℎ)(

𝑚

∑

𝑙=1

𝛾
ℎ𝑙
𝑃
𝑙
+

𝑚

∑

𝑙=1,𝑙 ̸= ℎ

𝜋
2

ℎ𝑙
𝐼
𝑛

+

𝑚

∑

𝑙=1

(𝑃
ℎ
− 𝑃
𝑙
)

2

)

×𝑄 (𝛼, ℎ) − 𝑃
ℎ
)𝑒 (𝑘)

< 𝜌𝑒
𝑇

(𝑘) 𝑃
ℎ
𝑒 (𝑘) ,

(28)

for all 𝜃
𝑘
= ℎ ∈ 𝑀 and for all 𝜃

𝑘+1
= 𝑙 ∈ 𝑀. From (28), (19),

and (20), it is known that
𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃

𝑘+1
| 𝑒 (𝑘) , 𝜃

𝑘
)]

− 𝑉 (𝑒 (𝑘) , 𝜃
𝑘
) < 𝜌𝑉 (𝑒 (𝑘) , 𝜃

𝑘
) ,

(29)

and hence

𝐸 [𝑉 (𝑒 (𝑘 + 1) , 𝜃
𝑘+1
)] − 𝐸 [𝑉 (𝑒 (𝑘) , 𝜃

𝑘
)]

𝐸 [𝑉 (𝑒 (𝑘) , 𝜃
𝑘
)]

< 𝜌. (30)

Condition (25) in Theorem 2 is a LMI. We denote condi-
tion (25) as Ξ(𝛼, 𝜌) < 0 and for any 𝛼 > 0 define

𝜌 (𝛼) = inf {𝜌 | 𝜌 ∈ R, Ξ (𝛼, 𝜌) < 0 has solutions} . (31)

Using the LMI toolbox of MATLAB, 𝜌(𝛼) can be computed
by Algorithm 1.

For a 𝛼 > 0with 𝜌 < 0, it is known fromTheorems 1 and 2
that linear distributed inference (7) is average consensus and
that 𝜌 is a bound of convergence speed. Since a less value of
𝜌 < 0 gives a faster convergence speed, the fast distributed
inference problem is addressed as

𝜇 = inf
𝛼>0

𝜌 (𝛼) (32)

which is an unconstrainted optimization problem of only one
variable. Many existing numerical optimizationmethods [18]
can be utilized to solve this problem efficiently. When 𝜇 < 0,
the optimal parameter

𝛼opt = arginf
𝛼>0

𝜌 (𝛼) (33)

provides a fast linear distributed inference which reaches
average consensus.
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Choose TOL > 0;
Choose enough large 𝜌

1
∈ R such that Ξ(𝛼, 𝜌

1
) has solutions;

Choose enough small 𝜌
2
∈ R such that Ξ(𝛼, 𝜌

2
) has no solution;

repeat until 𝜌
1
− 𝜌
2
< TOL

𝜌
0
← (𝜌
1
+ 𝜌
2
)/2;

Solve Ξ(𝛼, 𝜌
0
) < 0

if Ξ(𝛼, 𝜌
0
) < 0 has solutions

𝜌
1
← 𝜌
0
;

else
𝜌
2
← 𝜌
0
;

end (repeat)
Set 𝜌(𝛼) ← 𝜌

1
.

Algorithm 1

4. Numerical Example

In this section, we present simulation results for average
consensus of distributed inference in a simple sensor net-
work. The network has 10 sensor nodes and switched in
three possible communication situations. Figure 1 illustrates
3 communication situations. The estimated transition proba-
bilities of 𝜃

𝑘
is

Γ = [𝛾
ℎ𝑙
] = [

[

0.7 0.2 0.1

0.45 0.3 0.25

0.5 0.1 0.4

]

]

. (34)

The estimate error Δ𝛾
ℎ𝑙
satisfies

Δ𝛾ℎ𝑙
 ≤ 2𝜋ℎ𝑙 = 0.1, ∀ℎ ∈ {1, 2, 3} , ∀𝑙 ∈ {1, 2, 3} . (35)

Using the computation procedure in Section 3, the optimiza-
tion problem (32) is solved. Graph of 𝜌(𝛼) is displayed in
Figure 2. The result is 𝜇 = −0.2407 < 0 and 𝛼opt = 0.4812.
For the communication situation in Figure 1(1), we use the
design method in [7] of minimizing asymptotic convergence
factor and obtain 𝛼

1
= 0.5528. The design method in [7]

is also applied to the other 2 situations in Figure 1 and get
𝛼
2
= 𝛼
3
= 0.5359.

In order to compare our method with that in [7], the
initial states of each sensor node is selected as

𝑥 (0) = [𝑦
1
𝑦
2
𝑦
3
𝑦
4
𝑦
5
𝑦
6
𝑦
7
𝑦
8
𝑦
9
𝑦
10
]
𝑇

= [15.2 14.6 14.3 15.6 15.3 14.5 15.7 14.9 15.1 14.8]
𝑇

.

(36)

Thus from (1), we have 𝑦 = 15. The real transition probability
matrix is set as

Γ = [𝛾
ℎ𝑙
] = [

[

0.68 0.24 0.08

0.4 0.27 0.33

0.53 0.11 0.36

]

]

. (37)

Figures 3, 4, and 5 show state curves of all sensor nodes
under 𝛼opt, 𝛼1, and 𝛼2, respectively. It can be seen that all
sensor states convergence to 𝑦 = 15 and that our 𝛼opt has
faster convergence rate than 𝛼

1
or 𝛼
2
has. Achieving faster

convergence is because our method considers the random
switching among the 3 communication situations while [7]’s
method considers only 1 communication situation.

5. Conclusion

The distributed average consensus problem in sensor net-
works has been studied under a Markovian switching com-
munication topology of uncertain transition probabilities.

Stochastic Lyapunov functions have been employed to inves-
tigate average consensus of linear distributed inference. A
sufficient condition of average consensus has been proposed
based on feasibility of a set of coupled LMIs. The design
problem of fast distributed inference has been solved by
numerical optimization techniques.
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