504 research outputs found

    A QTL on chromosome 3q23 influences processing speed in humans

    Get PDF
    Processing speed is a psychological construct that refers to the speed with which an individual can perform any cognitive operation. Processing speed correlates strongly with general cognitive ability, declines sharply with age, and is impaired across a number of neurological and psychiatric disorders. Thus, identifying genes that influence processing speed will likely improve understanding of the genetics of intelligence, biological aging, and the etiologies of numerous disorders. Previous genetics studies of processing speed have relied on simple phenotypes (e.g., mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture of processing speed by using a multi-dimensional model applied to a battery of cognitive tasks. Linkage and QTL-specific association analyses were performed on the factors from this model. The randomly ascertained sample comprised 1291 Mexican-American individuals from extended pedigrees. We found that performance on all three distinct processing-speed factors (Psychomotor Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. We identified a genome-wide significant QTL on chromosome 3q23 for Psychomotor Speed (LOD = 4.83). Within this locus, we identified a plausible and interesting candidate gene for Psychomotor Speed (Z = 2.90, p = 1.86×10−03)

    Hypoxia-specific targets in cancer therapy: role of splice variants

    Get PDF
    Tumour hypoxia is a well known adverse prognostic factor in the treatment of solid tumours. Hypoxia-inducible factor 1α (HIF-1α), a transcription factor subunit regulating a large number of hypoxia-responsive genes, is considered an attractive target for novel treatment approaches, due to a frequently reported association between HIF-1α overexpression and poor outcome in clinical series. This month in BMC Medicine, Dales et al. report on splice variants of HIF-1α in fresh frozen tissue samples of early human breast cancer, finding an association of mRNA levels of the variant HIF-1αTAG with adverse clinical factors (lymph node status, hormone receptor status) and poor metastasis-free survival. This preliminary study addresses the possibility that specific targeting of individual isoforms resulting from alternative splicing may play a role in HIF-1-directed treatment approaches

    Binding Properties and Stability of the Ras-Association Domain of Rap1-GTP Interacting Adapter Molecule (RIAM)

    Get PDF
    The Rap1-GTP interacting adapter protein (RIAM) is an important protein in Rap1-mediated integrin activation. By binding to both Rap1 GTPase and talin, RIAM recruits talin to the cell membrane, thus facilitating talin-dependent integrin activation. In this article, we studied the role of the RIAM Ras-association (RA) and pleckstrin-homology (PH) domains in the interaction with Rap1. We found that the RA domain was sufficient for GTP-dependent interaction with Rap1B, and the addition of the PH domain did not change the binding affinity. We also detected GTP-independent interaction of Rap1B with the N-terminus of RIAM. In addition, we found that the PH domain stabilized the RA domain both in vitro and in cells

    Quality of transition to end-of-life care for cancer patients in the intensive care unit

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.BACKGROUND: There have been few studies that have evaluated the quality of end-of-life care (EOLC) for cancer patients in the ICU. The aim of this study was to explore the quality of transition to EOLC for cancer patients in ICU. METHODS: The study was undertaken on medical patients admitted to a specialist cancer hospital ICU over 6 months. Quantitative and qualitative methods were used to explore quality of transition to EOLC using documentary evidence. Clinical parameters on ICU admission were reviewed to determine if they could be used to identify patients who were likely to transition to EOLC during their ICU stay. RESULTS: Of 85 patients, 44.7% transitioned to EOLC during their ICU stay. Qualitative and quantitative analysis of the patients' records demonstrated that there was collaborative decision-making between teams, patients and families during transition to EOLC. However, 51.4 and 40.5% of patients were too unwell to discuss transition to EOLC and DNACPR respectively. In the EOLC cohort, 76.3% died in ICU, but preferred place of death known in only 10%. Age, APACHE II score, and organ support, but not cancer diagnosis, were identified as associated with transition to EOLC (p = 0.017, p < 0.0001 and p = 0.001). CONCLUSIONS: Advanced EOLC planning in patients with progressive disease prior to acute deterioration is warranted to enable patients' wishes to be fulfilled and ceiling of treatments agreed. Better documentation and development of validated tools to measure the quality EOLC transition on the ICU are needed.Peer reviewe

    Multiorgan Metastasis of Human HER-2+ Breast Cancer in Rag2−/−;Il2rg−/− Mice and Treatment with PI3K Inhibitor

    Get PDF
    In vivo studies of the metastatic process are severely hampered by the fact that most human tumor cell lines derived from highly metastatic tumors fail to consistently metastasize in immunodeficient mice like nude mice. We describe a model system based on a highly immunodeficient double knockout mouse, Rag2−/−;Il2rg−/−, which lacks T, B and NK cell activity. In this model human metastatic HER-2+ breast cancer cells displayed their full multiorgan metastatic potential, without the need for selections or additional manipulations of the system. Human HER-2+ breast cancer cell lines MDA-MB-453 and BT-474 injected into Rag2−/−;Il2rg−/− mice faithfully reproduced human cancer dissemination, with multiple metastatic sites that included lungs, bones, brain, liver, ovaries, and others. Multiorgan metastatic spread was obtained both from local tumors, growing orthotopically or subcutaneously, and from cells injected intravenously. The problem of brain recurrencies is acutely felt in HER-2+ breast cancer, because monoclonal antibodies against HER-2 penetrate poorly the blood-brain barrier. We studied whether a novel oral small molecule inhibitor of downstream PI3K, selected for its penetration of the blood-brain barrier, could affect multiorgan metastatic spread in Rag2−/−; Il2rg−/− mice. NVP-BKM120 effectively controlled metastatic growth in multiple organs, and resulted in a significant proportion of mice free from brain and bone metastases. Human HER-2+ human breast cancer cells in Rag2−/−;Il2rg−/− mice faithfully reproduced the multiorgan metastatic pattern observed in patients, thus allowing the investigation of metastatic mechanisms and the preclinical study of novel antimetastatic agents

    Multivariate GWAS of Alzheimer’s disease CSF biomarker profiles implies GRIN2D in synaptic functioning

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences. METHODS: We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects. RESULTS: Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers. CONCLUSIONS: These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine

    Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore