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Abstract

Processing speed is a psychological construct that refers to the speed with which an individual can 

perform any cognitive operation. Processing speed correlates strongly with general cognitive 

ability, declines sharply with age, and is impaired across a number of neurological and psychiatric 

disorders. Thus, identifying genes that influence processing speed will likely improve 

understanding of the genetics of intelligence, biological aging, and the etiologies of numerous 

disorders. Previous genetics studies of processing speed have relied on simple phenotypes (e.g., 

mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing 

speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture 

of processing speed by using a multi-dimensional model applied to a battery of cognitive tasks. 

Linkage and QTL-specific association analyses were performed on the factors from this model. 

The randomly ascertained sample comprised 1291 Mexican-American individuals from extended 

pedigrees. We found that performance on all three distinct processing-speed factors (Psychomotor 
Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. 

We identified a genome-wide significant QTL on chromosome 3q23 for Psychomotor Speed (LOD 

= 4.83). Within this locus, we identified a plausible and interesting candidate gene for 

Psychomotor Speed (Z = 2.90, p = 1.86×10−03).
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Introduction

Processing speed is “the speed with which an individual can perform (and provide a 

response to) any cognitive operation” (Salthouse, 1996). Impairments in processing-speed 

ability have meaningful consequences for everyday tasks, such as reading instructions, 

calculating a tip, or driving a car (Goverover et al., 2007; Owsley et al., 2002). As early as 

the 1800s, psychologists recognized the link between individual differences in processing 

speed and general intelligence (Cattell, 1890; Galton, 1890; O’Brien & Tulsky, 2008). 

Contemporary research frames processing speed as an integral component of general 

intelligence (Deary, Der & Ford, 2001; Grudnik & Kranzler, 2001; Sheppard & Vernon, 

2008). Processing speed deficits may impede the initial time-dependent aspects of a task, 

producing insufficient or incorrect information necessary for downstream processing events, 

and consequently leading to poor task performance (Salthouse, 1996; Madden, 2001). The 

importance of processing speed is further underlined by its role in developmental trajectories 

as well as its vulnerability to insult with advancing age and neurological illness. Processing 

speed is thought to support the development of reasoning ability (the ability to think 

logically and solve problems) (Ferrer et al., 2013) as well as contributing to the emergence 

of successful real-world social functioning in adolescents (Bachman et al., 2012). Processing 

speed declines dramatically with age, and some argue that this explains age-related cognitive 

decline generally (Finkel et al., 2007; Eckert et al., 2010; Salthouse & Ferrer-Caja, 2003). 

Reduced processing speed is also considered a hallmark of various neurological and 

psychiatric disorders, including multiple sclerosis (Chiaravalloti & DeLuca, 2008; Ruet et 

al., 2013), mild cognitive impairment and Alzheimer’s Disease (Phillips et al., 2013; Tales et 

al., 2012; Warkentin, Erikson & Janciauskiene, 2008), unipolar and bipolar depressive 

disorders (McDermott & Ebmeier, 2009; Torres, Boudreau & Yatham, 2007; Glahn et al., 

2010) and psychosis (Reichenberg & Harvey, 2007; Dickinson, Ramsey & Gold, 2007; 

Knowles, David & Reichenberg, 2010; Mathias et al., 2017). Thus, examining the genetic 

architecture of processing speed should improve our understanding of the biological 

pathways involved in this key cognitive ability and potentially how these pathways are 

disrupted in brain-related diseases or aging.

Processing-speed ability is classically measured by the number of correct responses that an 

individual is able to make when completing a timed task or mean reaction time over a fixed 

number of trials (Lezak, 2004). Previous genetics studies of processing speed have 

conformed to this paradigm. Twin studies have found that such measures of processing 

speed are moderately and significantly heritable, with estimates varying between 0.35 and 

0.77 for a wide variety of measures, including simple and complex reaction times, inspection 

time, Stroop tasks, memory scanning, letter matching, digit-symbol substitution tasks, and 

parts A and B of the trail making test (TMT) (Vernon, 1989; Baker, Vernon & Ho, 1991; 

Neubauer et al., 2000; Luciano et al., 2001; Posthuma et al., 2002; Posthuma et al., 2003; 

Hansell et al., 2005; Lee et al., 2012). Gene-discovery efforts, on the other hand, have 

resulted in less cohesive findings. There are, to our knowledge, four published genome-wide 

association (GWA) and two family-based linkage studies of processing-speed ability. 

Luciano and colleagues meta-analyzed the results of GWA applied to various processing-

speed measures (including the digit symbol substitution task, inspection time and reaction 
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time indices, plus a composite speed factor) in four cohorts (total N ≈ 3,500) (Luciano et al., 

2011). They identified several suggestively significant SNPs in DCDC2 (reaction time) on 

chromosome 6p22.3, TRIB3 (speed factor and reaction time) on chromosome 20p13, and 

NFKBIL1 (DSST and speed factor) on chromosome 6p21.33. A meta-analysis of GWAS in 

three separate samples (N = 1,338) of the trail making test (TMT) by Ising and colleagues 

(Ising et al., 2014) revealed a suggestively significant SNP, the effects of which were 

moderated by age, in the DSG1 gene on chromosome 18q21.1. Ibrahim-Verbass and 

colleagues (Ibrahim-Verbaas et al., 2016) identified a SNP in the CADM2 gene on 

chromosome 3p21.1 for performance on the DSST in a sizeable cohort (N = 32,070), which 

they replicated at a nominal level of significance in a smaller sample (N = 1,311). Most 

recently, a GWAS by Davies and colleagues discovered a locus on chromosome 12q24 

influencing reaction time containing the genes SH2B3 and ATXN2 (Davies et al., 2016). 

These associations did not replicate, although the replication sample comprised published 

GWAS of general cognitive function and educational attainment rather than reaction time 

per se. There have been two genome-wide linkage studies of processing speed. Luciano and 

colleagues did not find genome-wide significant QTLs for the DSST in a sample of 361 

families comprising 2-5 siblings per family (Luciano et al., 2006), while a genome-wide 

linkage study of reaction time (378 families; 2-5 siblings per family) found suggestive 

linkage on the long arm of chromosome 1 and the short-arms of chromosomes 8, 11, and 22 

(Wright et al., 2008). In sum, the genetic architecture of processing-speed requires further 

investigation.

Previous genetics studies of processing speed used disparate tasks of reaction time or 

constrained analysis to individual neuropsychological measures of processing-speed ability. 

This approach implicitly assumes that processing speed is a unitary construct and factor 

analysis of cognitive test batteries typically reveals a single processing-speed factor (Deary, 

2001; Deary, Spinath & Bates, 2006). However, the diversity of test types that load on 

processing-speed factors suggests that it may actually be a multidimensional construct 

(Posthuma & Gues, 2008): a complex ability formed from a number of simpler cognitive 

sub-processes. More specifically, it has been proposed that processing speed can be broken 

down into simple and complex factors, comprising reaction time and information processing, 

respectively (Chiaravalloti et al., 2003). In a previous study, we built a model of simple and 

complex processing speed in the vein of seminal work by Miyake and colleagues (Miyake et 

al., 2000; Friedman & Miyake, 2017), using a combination of confirmatory factor and 

structural regression modeling (Knowles et al., 2012). This model comprised a simple factor 

(Psychomotor Speed) plus two complex (Sequencing and Shifting and Verbal Fluency) 

factors (Figure 1).

The present study addresses the limitations in the breadth of phenotypes employed in 

previous gene-discovery studies of processing speed by applying genome-wide linkage, 

peak-wide association and gene analysis to multiple processing-speed factors derived from a 

replicated model of processing speed in a sample of 1291 individuals from extended 

pedigrees. The aim of this study was to replicate our previous model of processing speed and 

then use that model to characterize the genetic basis of multiple aspects of processing-speed 

ability and in so doing, isolate potentially interesting candidate genes for the numerous 

neurological and psychiatric disorders in which it is impaired.
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Methods

Participants

The sample comprised 1291 individuals from extended pedigrees (75 families, average size 

16.48 people, range = 2-129). The sample was 62.90% female and had a mean age of 45.47 

(SD = 14.64; range = 18-97 years). Individuals in this Genetics of Brain Structure and 

Function (GOBS) cohort have actively participated in research for over 18 years and were 

randomly selected from the community with the constraints that they are of Mexican 

American ancestry, part of a large family, and live within the San Antonio region (Knowles 

et al., 2014). All participants provided written informed consent before participating in any 

aspect of the study.

Neuropsychological Assessment

Each participant was required to complete a 90-minute neuropsychological test battery 

consisting of standard and computerized measures (Knowles et al., 2014; Glahn et al., 2007). 

From this battery, 7 measures taken from 6 neuropsychological tests were similar to those in 

the processing-speed model previously published by Knowles and colleagues (Knowles et 

al., 2012). Two of these measures were reaction times, one taken from the Emotion 

Recognition (Kohler et al., 2003) and Facial Memory tasks. These reaction time measures 

were chosen because they were normally distributed with few outliers. In addition we 

included the number and letter sequencing measures from the Trails A, and the Trails B, and 

verbal and semantic fluency measures; all of these tasks have been described previously 

(Knowles et al., 2014; Glahn et al., 2007).

Stasticial Analysis

Confirmatory Factor Analysis—One of the aims of the present study was to replicate a 

previously published model of processing-speed ability (Knowles et al., 2014). To this end, 

we took analogous measures in our sample and fit the model using confirmatory factor 

analysis in Mplus (Muthén & Muthén, 2011). Prior to model fitting, z-scores were computed 

and screened for outliers (z-scores ≥ 3.29 were removed). In order to minimize the impact of 

missing data on composite scores derived via factor analysis we imputed missing values 

using the mice package in R (van Buuren & Groothuis-Oudshoorn, 2011). Scores were 

imputed only for those subjects with less than 50% missing data. The imputation model was 

based on all available cognitive data plus age and sex. Imputation resulted in a complete 

dataset of 1291 individuals. In order to appropriately estimate standard errors and X2 

statistics during factor analysis, family structure was taken into account using the cluster 
command in Mplus. Each factor model was assessed in terms of both model fit and the 

strength and significance of the factor loadings. Given the large sample size a significant X2, 

which is typically indicative of poor model fit, was attributed less weight than other fit 

statistics less biased by sample size (Kline, 2005). The X2 is a reliable index of fit for 

models with 75-200 cases, after which it is almost always statistically significant (Kenny, 

2003). Thus these additional fit statistics were also included: RMSEA, CFI, TLI and SRMR. 

For RMSEA (Root Mean Square Error of Approximation) a value which is below 0.05 is 

considered excellent fit. For CFI (Comparative Fit Index) and TLI (Tucker Lewis Index) a 

value >0.90 is indicative of good fit and of 0.95 excellent fit. For SRMR (Standardized Root 
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Mean Square Residual) a value below 0.10 is considered a good fit. For more information on 

any given fit index readers are referred to excellent resource on model fit by Kenny (Kenny, 

2003). Once a factor model was established, factor scores were derived for each individual 

participant and saved for subsequent analysis.

Genotyping—Subjects were genotyped for approximately one million SNPs using 

Illumina HumanHap550v3, HumanExon510Sv1, Human1Mv1 and Human1M-Duov3 

BeadChips, according to the Illumina Infinium protocol (Illumina, San Diego, CA). SNP 

loci were checked for Mendelian consistency utilizing SimWalk2 (Sobel & Lange, 1996). 

SNPs or samples exhibiting high calling rate failures or requiring excessive blanking (i.e., if 

<95% of the genotypes are retained) were eliminated from analyses. Missing genotypes 

were imputed according to Mendelian laws based on available pedigree data using MERLIN 

(Abecasis et al., 2002). Maximum likelihood techniques, accounting for pedigree structure, 

were used to estimate allelic frequencies (Boehnke, 1991). Estimates of allelic frequencies 

were formally tested and found to be in Hardy-Weinberg equilibrium. For linkage analyses, 

multipoint identity-by-descent (IBD) matrices were calculated based on 28,387 SNPs 

selected from the 1M GWAS panel as follows. Using genotypes for 345 founders, SNPs on 

each chromosome were selected to be at least 1kb apart, MAF >= 5%, and LD within a 

100kb sliding window not exceeding |rho| = 0.15. The resulting selection averaged 7-8 

SNPs/centimorgan. For each centimorgan location in the genome, multipoint IBD 

probability matrices were calculated using a stochastic Markov Chain Monte Carlo 

procedure implemented in the computer package, Loki (Heath, 1997). Each run lasted 

100,000 iterations with a burn-in of 10,000 iterations. LM ratio = 0.8 (the LM ratio is 

parameter in Loki that sets the proportion of “meiosis” vs. “locus” updates, where the 

former guarantees irreducibility of the sample and the latter improves mixing). Map 

distances were calculated using the Haldane mapping function (Haldane, 1919).

Quantitative Genetic Analyses—All genetic analyses were performed in SOLAR 

(Almasy & Blangero, 1998). SOLAR implements a maximum likelihood variance 

decomposition to determine the contribution of genes and environmental influence to a trait 

by modeling the covariance among family members as a function of expected allele sharing 

given the pedigree. In the simplest such decomposition, the additive genetic contribution to a 

trait is represented by the heritability, or h2, index. First, univariate variance decomposition 

analysis was applied to each individual measure, and then to each processing-speed factor 

derived from the confirmatory factor model. All traits were normalized using an inverse 

Gaussian transformation. Age, age2, sex and their interactions were included as covariates 

and residualized traits were saved for subsequent bivariate polygenic, linkage and 

association analysis. Second, bivariate analysis was applied to pairs of processing-speed 

factors where the phenotypic covariance between the traits was decomposed into its genetic 

and environmental constituents to determine the extent to which they are influenced by 

shared genetic effects (e.g. genetic correlation, ρg).

Genome-Wide Linkage, Peak-Wide Association and Gene-Based Analyses—
Quantitative trait linkage analysis was performed to localize specific chromosomal locations 

influencing processing-speed factors (Almasy & Blangero, 1998). Model parameters were 
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estimated using maximum likelihood. The hypothesis of significant linkage was assessed by 

comparing the likelihood of a classical additive polygenic model with that of a model 

allowing for both a polygenic component and a variance component due to linkage at a 

specific chromosomal location (as evidenced by the location-specific identity-by-descent 

probability matrix). The LOD score, given by the log10 of the ratio of the likelihoods of the 

linkage and the polygenic model, served as the test statistic for linkage. Genome-wide 

thresholds for linkage evidence were computed with correction for both the number of loci 

tested per genome. Briefly, using a method derived from (Feingold, Brown & Siegmund, 

1993), genome-wide p-value thresholds were computed as a function of the average marker 

density (linkage SNPs per centiMorgan) and the mean recombination frequency given the 

complexity of the specific pedigrees used in this study. These p-values were then converted 

to LOD scores. In our case, a LOD of 1.69 is required for suggestive significance (likely to 

happen by chance less than once in a genome-wide scan) and a LOD of 2.9 is required for 

genome-wide significance.

Any genomic region meeting genome-wide significance for linkage was further assessed 

using association analysis of the processing-speed domain and the variants within the cM 

that yielded the greatest LOD because this maximal LOD is the most likely location of the 

causal variant. Association analyses were run in SOLAR (Blangero, Williams-Blangero & 

Mahaney, 1993). To control for multiple testing a Bonferroni correction was applied for the 

effective number of SNPs (Cheverud, 2001), alpha was adjusted for each additional cM 

added to the search space. In order to yield more information about the SNPs in the region 

they were annotated for location and functional effects based on RefSeq transcripts using 

Annovar (Wang, Li & Hakonarson, 2010) applied to the hg19 reference genome (Casper et 

al., 2018).

Gene-based association analysis were performed using MAGMA (de Leeuw et al., 2015). A 

gene-based statistic was calculated for the top-ranked gene using the p-value associated with 

each SNP from association analysis. We elected to run gene analysis on the summary SNP 

statistics rather than on the raw genotype data so that the complex family structure could be 

appropriately modeled in SOLAR. SNPs were assigned to genes based on their position 

relative to gene coordinates (35kb upstream and 10kb downstream window to capture 

possible regulatory regions) outlined by the NCBI 37.3 build. Linkage disequilibrium (LD) 

was accounted for using the raw genotype data. We evaluated whether any individual SNPs 

within genes associated with processing speed were eQTL using the online GTEx portal 

(The GTEx Consortium, 2015; GTEx Consortium et al., 2017).

Results

Processing-Speed Model

Table 1 shows the heritability estimates of the cognitive measures that were included in the 

processing-speed model. All of these measures were significantly heritable.

Our previously published three-factor confirmatory factor model (Knowles et al., 2012) was 

fit to the data (Figure 1). Although Χ2 was significant (Χ11
2   = 43.70, p<.01), other fit indices 
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suggested that the model was a good fit to the data (RMSEA = 0.048 (95%CI = 0.034-0.063, 

p = .559), CFI = .99, TLI = .98, SRMR = .021). All factor loadings were significant at the 

p<.0001 level. The distribution of each factor score is shown in the supplemental material 

(Figures S1–3).

The heritability estimate for each factor derived from the model are shown in Table 1, all 

factor scores were moderately and significantly heritable. In general, these factors were 

more heritable than the individual tests that loaded on them. Both the phenotypic and genetic 

correlations were significant between all factor pairings. The correlations between both 

Psychomotor Speed and Sequencing and Shifting (ρp = 0.50, se = 0.02, p = 2.33×10−71; ρg = 

0.70, se = 0.07, p = 1.00×10−11) and Verbal Fluency (ρp = −0.49, se = 0.02, p = 4.61×10−68; 

ρg = −0.76, se = 0.06, p = 1.32×10−14) were large, as was the correlation between Shifting 
and Sequencing and Verbal Fluency (ρp = −0.85, se = 0.01, p = 9.31×10−84; ρg = −0.94, se = 

0.02, p = 2.99−32). While the strength of the relationships between each factor was sizeable, 

the overlap was not complete, suggesting dissociable aspects of processing speed ability 

both at the phenotypic and genetic level. This was true even for the genetic correlation 

between Shifting and Sequencing and Verbal Fluency, which was high, but also significantly 

different from −1 (p = 3.10×10−05).

Univariate Linkage Analysis of Processing Speed Factors

Figure 2 shows the multipoint plot for the univariate linkage runs of each processing-speed 

factor. For Psychomotor Speed one genome-wide significant locus was observed on 

chromosome 3 at 150cM (LOD = 4.83), the same location had some influence on both 

Sequencing and Shifting (LOD = 0.41) and Verbal Fluency (LOD = 0.59). No genome-wide 

significant loci were observed for the other processing-speed factors. Suggestively 

significant LODS were observed for Sequencing and Shifting on chromosome 4 at 108 cM 

(LOD = 2.49) and for Verbal Fluency on chromosomes 7 at 90 cM (LOD = 2.57) and 8 at 

144 cM (LOD = 2.36).

QTL-Specific Association and Gene-Based Analysis for Psychomotor Speed

The focal cM of the linkage peak (LOD = 4.83) for Psychomotor Speed spanned 

approximately 760kb (3:140884683..141644558). There were 266 variants in the GWA data 

with sufficient copies (MAC ≥ 5) in this region and the region contained 6 genes (Figure 3). 

First, univariate association analysis was applied to all variants under the peak for 

Psychomotor Speed. No SNP withstood a multiple testing correction (LD-adjusted 

Bonferroni-corrected α = 3.35×10−04). Table 2 shows the top ten association results for all 

tested SNPs for Psychomotor Speed. Inspection of Table 2 shows that of the top-ten ranked 

SNPs for Psychomotor Speed, 1 SNP was located in the upstream region of the gene 

RASA2, 6 were located in introns of RASA2, one was a synonymous variant located in an 

exon of RASA2, and two were located intergenically between ZBTB38 and RASA2. 

However, Table 2 also shows that of the top-ten variants associated with Psychomotor Speed 

nine were eQTLs for ZBTB38 in thyroid, ZBTB38 neighbors the gene RASA2 (Figure 3).

We applied gene-based analysis to the association summary statistics for Psychomotor 
Speed for the six genes under the peak. The top-ranked gene was RASA2 (Z = 2.90, p = 
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1.86×10−03; Table 3) containing 51 SNPs and survived Bonferroni correction for the number 

of genes that were tested (α = 8.33×10−03). Despite the top-ranked gene being RASA2, of 

those SNPs associated with RASA2 in this analysis 10 were eQTLs for RASA2 and 10 were 

eQTLs for ZBTB38 in thyroid and nerve tissues respectively (Table S1). These eQTL 

identifications suggest that Psychomotor Speed can be linked to both genes. Applying gene-

based analysis to summary statistics from association analysis of Sequencing and Shifting 
and Verbal Fluency showed that the gene, RASA2, was not significantly associated with 

either Sequencing and Shifting (Z = −0.01, p =0.50) or Verbal Fluency (Z = 0.43, p = 0.33).

Discussion

We investigated the genetic underpinnings of processing-speed ability using a combination 

of a multi-dimensional processing-speed model and genetic analysis in extended pedigree 

data. We replicated a previously published model of processing-speed ability from a 

different data set (Knowles et al., 2012), and using factor scores derived from that model, we 

identified a new genomic locus that influences a simple aspect of processing-speed ability, 

Psychomotor Speed, on chromosome 3q23. Furthermore, within the 3q23 locus we 

identified two genes RASA2 and ZBTB38 that were associated with Psychomotor Speed 
performance.

In general, processing speed is considered a unitary construct, measurable using individual

—and interchangeable—tasks. However, processing speed, like most cognitive abilities, is 

probably better described as a multi-faceted or multi-dimensional construct (Posthuma & 

Gues, 2008; Chiaravalloti et al., 2003). The implication here is that while on the surface 

processing-speed impairment leads to decrements in performance on speeded cognitive 

measures and related real-life tasks, the origins of those impairments might be 

heterogeneous (Mathias et al., 2017; Rochat et al., 2013). This might easily be dismissed as 

an argument of semantics (Keefe & Harvey, 2015), except that when it comes to genetics, 

ignoring such complexities at the phenotypic level could muddy the waters when attempting 

to identify the polygenic architecture of complex traits. To this end we replicated a factor 

model of processing-speed ability (Knowles et al., 2012) comprising both simple 

(Psychomotor Speed) and complex (Sequencing and Shifting and Verbal Fluency) 

processing-speed factors, and used the factor scores from this model to interrogate the 

genome. The use of such a model is advantageous because, where each latent variable 

encapsulates the overlapping variance of all measures that load on it, it is in essence a 

multivariate approach which is more powerful than a univariate one when searching for 

genes (Schmitz, Cherny & Fulker, 1998). We would argue that this encapsulation of shared 

variance explains why the heritability of the factors was greater than that of the individual 

measures that loaded on them. More specifically, the factor score represents a what is shared 

between multiple individual measures rather than the multiple sources of variance captured 

by individual tests which include those that are not necessarily relevant to the construct of 

interest.

We found that the scores from all three processing-speed factors were moderately and 

significantly heritable. We identified a region of chromosome 3q23 that influenced 

Psychomotor Speed via univariate linkage analysis. No individual SNP met peak-wide 
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significance, but the majority of the top-ranked SNPs were in or near the gene RASA2. 

Gene-based association analysis within the focal point of the peak revealed that the gene 

RASA2 was significantly associated with Psychomotor Speed. There was no evidence that 

RASA2 influenced Sequencing and Shifting or Verbal Fluency. Gene-based analysis is a 

more powerful method than testing individual SNPs (Wang et al., 2011) since it allows 

converging evidence from multiple genetic variants from the same gene to be assessed, thus 

enabling detection of signal that might not be detected when focusing on individual SNPs 

(Sniekers et al., 2017). By testing the joint association of all the variants in a gene it is 

possible to identify effects comprising many weaker signals that would otherwise be 

overlooked (de Leeuw et al., 2015). Thus, while no individual SNP met peak-wide 

significance, the gene-based analysis allowed us to collapse the signal of the multiple 

variants in RASA2, which were also enriched in the top-ranked SNPs from the single variant 

analysis.

The gene RASA2 (RAS p21 Protein Activator 2) is expressed in human brain (mean RPKM 

= 2.6 ± 0.38 (NCBI, 2016)), and particularly in the cerebellum and hypothalamus (Allen 

Institute for Brain Science). RASA2 encodes a RAS protein, these proteins (a large family of 

GTP-binding proteins) are in control of pathways that control cellular signaling, including 

those responsible for growth, migration, adhesion, cytoskeletal integrity, survival and 

differentiation (Rajalingam et al., 2007). Activation of RAS signaling is tightly controlled 

because alterations in cellular proliferation have dire repercussions for normal cell growth. 

Indeed, RAS genes have been identified as oncogenes, with cancer occurring when there are 

defects in these signaling mechanisms (Downward, 2003). Approximately 20% of all tumors 

have undergone an activating mutation in one of the RAS genes (Downward, 2003; Bos, 

1989). The gene RASA2 has been previously associated with the development of melanoma 

(Arafeh et al., 2015). In addition rare variation in RASA2 has been associated with Noonan 

syndrome (NS) (Chen et al., 2014). NS is the most common of several developmental 

disorders termed “RASopathies” caused by mutations in genes encoding RAS signaling 

pathway components (Chen et al., 2014; Rauen, 2013). NS occurs in familial and sporadic 

forms and is characterized by numerous physical features (e.g. facial and musculoskeletal 

abnormalities, short stature), increased risk for various diseases (e.g. hematological and 

oncological), as well as neurological, behavioral and cognitive issues (Romano et al., 2010). 

There is also an increased incidence of cognitive impairment and learning disability in 

individuals with NS (Sharland et al., 1992; van der Burgt et al., 1999). Interestingly, a subset 

of individuals with NS exhibit slowed speed of information processing and manual motor 

speed, and reduced dexterity (Pierpont et al., 2009; Wingbermuhle et al., 2012). These 

impairments in psychomotor speed have been suggested to be the most common 

neuropsychological deficit in individuals with NS (Pierpoint, 2016). Thus while variation in 

RASA2 has not previously been explicitly associated with processing speed the results of 

the present study that it is an interesting and plausible candidate gene.

Several of the variants within the gene RASA2 were eQTLs affecting the expression of a 

neighboring gene ZBTB38, thus also implicating this gene in Psychomotor-Speed 
performance. The gene ZBTB38 (zinc finger and BT domain containing 38) is expressed in 

human brain (RPKM = 7.3 ± 0.42 (NCBI, 2016)), and particularly in the cerebellum and 

thalamus (Allen Institute for Brain Science). This gene encodes a Kaiso-like methyl-CpG 
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binding protein that is an epigenetic regulator (Clouaire & Stancheva, 2008). It has been 

shown that the ZBTB38 protein represses the transcription of methylated DNA, at least in 

transcription assays (Filion et al., 2006; Sasai, Nakao & Defossez, 2010; Pozner et al., 

2018). DNA methylation is an epigenetic mechanism that inhibits transcription (Bogdanovic 

& Veenstra, 2009). It is part of normal development, for example it is involved in X-

chromosome inactivation (Bird, 2002). Methylated DNA sites recruit methyl-CpG binding 

domain proteins, for example ZBTB38, and establish silent chromatin, or regions of the 

chromosome that are not being actively transcribed (Bogdanovic & Veenstra, 2009). 

Unsurprisingly it has been shown that ZBTB38 is important for genome stability (Miotto et 

al., 2014; Miotto et al., 2018). Variation in ZBTB38 has been associated with prostate cancer 

(Kote-Jarai et al., 2011). It has also been associated consistently with stature in both cattle 

(Liu et al., 2013) and humans (Wang et al., 2013; Gudbjartsson et al., 2008; Lin et al., 2017). 

This gene has not been previously associated with either processing speed or general 

cognitive ability.

In the present study, we explored the genetic architecture of processing speed using our 

previously constructed model. We have shown previously that identifying genes that 

influence cognitive factors is more tractable than finding genes for either general intelligence 

or individual neuropsychological tasks (Knowles et al., 2014). The linkage and association 

findings presented in this manuscript highlight a novel genetic locus for Psychomotor Speed, 

a simple aspect of processing-speed ability. We also identified the gene RASA2 within this 

locus, which was associated with Psychomotor Speed performance. Increased understanding 

of the genetic architecture of processing speed has implications for understanding the 

biologic underpinnings of intelligence, cognitive aging, and psychiatric disorders. Thus, the 

present study generates the testable hypothesis that RASA2 is a potential candidate gene for 

cognitive enhancement, as well as a target for the amelioration of cognitive aging. RASA2 
may also be a putative candidate for neurological and psychiatric disorders for which 

processing-speed impairment is a key feature.
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Figure 1. 
Confirmatory factor model of processing-speed ability.
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Figure 2. 
Genome-wide multipoint plot of processing-speed domains.
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Figure 3. 
Multipoint plot of Psychomotor Speed on chromosome 3 and genes falling within the 

150cM region with the maximal LOD.
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Table 2.

Top-ten ranked peak-wide univarite association results for Psychomotor Speed.

rsid (basepair) Χ2 (p-value) Function (Closest) Gene(s) Ref/Alt GTEx eQTL (p-value) MAC MAF

rs3821712 (3:141205185) 10.34 (1.30×10−03) Upstream RASA2 C/T ZBTB38 (2.4×10−05) 1127 0.44

rs295323 (3:141327474) 10.11 (1.48×10−03) Exonic (Synonymous) RASA2 G/A ZBTB38 (1.1×10−05) 1103 0.43

rs9813177 (3:141212518) 10.00 (1.57×10−03) Intronic RASA2 A/G ZBTB38 (3.2×10−05) 1127 0.44

rs7632308 (3:141196260) 9.71 (1.83×10−03) Intergenic ZBTB38;RASA2 T/C ZBTB38 (2.2×10−05) 1109 0.44

rs7643837 (3:141209867) 9.46 (2.10×10−03) Intronic RASA2 T/C ZBTB38 (3.7×10−05) 1137 0.45

rs6785874 (3:141244816) 9.43 (2.14×10−03) Intronic RASA2 G/A ZBTB38 (2.3×10−05) 1140 0.45

rs6800122 (3:141249398) 9.29 (2.31×10−03) Intronic RASA2 C/T ZBTB38 (5.8×10−05) 1137 0.45

rs1366042 (3:141183944) 9.07 (2.60×10−03) Intergenic ZBTB38;RASA2 G/A ZBTB38 (4.9×10−05) 1114 0.44

rs6767158 (3:141228874) 8.83 (2.96×10−03) Intronic RASA2 C/T ZBTB38 (2.4×10−05) 1131 0.44

rs3821710 (3:141301451) 8.71 (3.16×10−03) Intronic RASA2 G/A None 1083 0.43
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Table 3.

Results of gene-based analyses for Psychomotor Speed.

Gene Start Stop Number of SNPs Z p

RASA2 141170891 141344186 51 2.90 1.86×10−03

ATP1B3 141560424 141655382 29 2.06 0.02

RNF7 141422051 141475645 23 1.31 0.10

GRK7 141462043 141545892 29 0.74 0.23

PXYLP1 140915682 141023486 47 0.07 0.47

ZBTB38 141008055 141178634 48 −0.05 0.52
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