33 research outputs found
GMRT 610-MHz observations of the faint radio source population – and what these tell us about the higher radio-frequency sky
We present 610-MHz Giant Metrewave Radio Telescope observations of 0.84 deg of the AMI001 field (centred on 002310, +31°53′) with an rms noise of 18 μJy beam in the centre of the field. A total of 955 sources are detected, and 814 are included in the source count analysis. The source counts from these observations are consistent with previous work. We have used these data to study the spectral index distribution of a sample of sources selected at 15.7 GHz from the recent deep extension to the Tenth Cambridge (10C) survey. The median spectral index, α, (where S ∝ ν) between 0.08</mJy<0.2 is 0.32 ± 0.14, showing that star-forming galaxies, which have much steeper spectra, are not contributing significantly to this population. This is in contrast to several models, but in agreement with the results from the 10C ultradeep source counts; the high-frequency sky therefore continues to be dominated by radio galaxies down to S = 0.1 mJy.The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. IHW thanks the Science and Technologies Facilities Council for a studentship. IHW and MJJ acknowledge support from the Square Kilometre Array South Africa. IHW thanks the South African Astronomical Observatory, where some of this work was carried out
The faint radio source population at 15.7 GHz-IV. The dominance of core emission in faint radio galaxies
We present 15-GHz Karl G. Jansky Very Large Array observations of a complete
sample of radio galaxies selected at 15.7 GHz from the Tenth Cambridge (10C)
survey. 67 out of the 95 sources (71 per cent) are unresolved in the new
observations and lower-frequency radio observations, placing an upper limit on
their angular size of ~2 arcsec. Thus compact radio galaxies, or radio galaxies
with very faint jets, are the dominant population in the 10C survey. This
provides support for the suggestion in our previous work that low-luminosity
() radio galaxies are core-dominated, although
higher-resolution observations are required to confirm this directly. The 10C
sample of compact, high-frequency selected radio galaxies is a mixture of
high-excitation and low-excitation radio galaxies and displays a range of radio
spectral shapes, demonstrating that they are a mixed population of objects
The faint radio source population at 15.7 GHz - II. Multi-wavelength properties
A complete, flux density limited sample of 96 faint ( mJy) radio
sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We
have matched this sample to a range of multi-wavelength catalogues, including
SERVS, SWIRE, UKIDSS and optical data; multi-wavelength counterparts are found
for 80 of the 96 sources and spectroscopic redshifts are available for 24
sources. Photometric reshifts are estimated for the sources with
multi-wavelength data available; the median redshift of the sample is 0.91 with
an interquartile range of 0.84. Radio-to-optical ratios show that at least 94
per cent of the sample are radio loud, indicating that the 10C sample is
dominated by radio galaxies. This is in contrast to samples selected at lower
frequencies, where radio-quiet AGN and starforming galaxies are present in
significant numbers at these flux density levels. All six radio-quiet sources
have rising radio spectra, suggesting that they are dominated by AGN emission.
These results confirm the conclusions of Paper I that the faint, flat-spectrum
sources which are found to dominate the 10C sample below mJy are the
cores of radio galaxies. The properties of the 10C sample are compared to the
SKADS Simulated Skies; a population of low-redshift starforming galaxies
predicted by the simulation is not found in the observed sample.IHW acknowledges a Science and Technology Facilities Council studentship. IHW, MJ, MV acknowledge support from the Square Kilometre Array South Africa project and the South African National Research Foundation. MV is supported by the European Commission Research Executive Agency FP7-SPACE- 2013-1 Scheme (Grant Agreement 607254 - Herschel Extragalactic Legacy Project - HELP). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Opinions expressed and conclusions arrived at are those of the authors and not necessarily attributed to the SKA SA. We thank the anonymous referee for their helpful comments.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv190
10C continued: A deeper radio survey at 15.7 GHz
We present deep 15.7-GHz observations made with the Arcminute Microkelvin
Imager Large Array in two fields previously observed as part of the Tenth
Cambridge (10C) survey. These observations allow the source counts to be
calculated down to 0.1 mJy, a factor of five deeper than achieved by the 10C
survey. The new source counts are consistent with the extrapolated fit to the
10C source count, and display no evidence for either steepening or flattening
of the counts. There is thus no evidence for the emergence of a significant new
population of sources (e.g. starforming) at 15.7 GHz flux densities above 0.1
mJy, the flux density level at which we expect starforming galaxies to begin to
contribute. Comparisons with the de Zotti et al. model and the SKADS Simulated
Sky show that they both underestimate the observed number of sources by a
factor of two at this flux density level. We suggest that this is due to the
flat-spectrum cores of radio galaxies contributing more significantly to the
counts than predicted by the models.We thank the staff of the Mullard Radio Astronomy Observatory for maintaining and operating AMI. IHW and CR acknowledge Science and Technology Facilities Council studentships. IHW acknowledges support from the Square Kilometre Array South Africa project and the South African National Research Foundation. This research has made use of NASA’s Astrophysics Data System. We thank the referee for their careful reading of this manuscript.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv296
The prevalence of core emission in faint radio galaxies in the SKA Simulated Skies
Empirical simulations based on extrapolations from well-established low-frequency (10 GHz) source population; they underpredict the number of observed sources by a factor of 2 below S18GHz = 10 mJy and fail to reproduce the observed spectral index distribution. We suggest that this is because the faint radio galaxies are not modelled correctly in the simulations and show that by adding a flat-spectrum core component to the Fanaroff and Riley type-I (FRI) sources in the Square Kilometre Array (SKA) Simulated Skies, the observed 15 GHz source counts can be reproduced. We find that the observations are best matched by assuming that the fraction of the total 1.4 GHz flux density that originates from the core varies with 1.4 GHz luminosity; sources with 1.4 GHz luminosities < 1025 W Hz − 1 require a core fraction ∼0.3, while the more luminous sources require a much smaller core fraction of 5 × 10−4. The low luminosity FRI sources with high core fractions that were not included in the original simulation may be equivalent to the compact ‘FR0’ sources found in recent studies
MIGHTEE: Are giant radio galaxies more common than we thought?
We report the discovery of two new giant radio galaxies (GRGs) using the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey. Both GRGs were found within a ∼1 deg2 region inside the COSMOS field. They have redshifts of z = 0.1656 and z = 0.3363 and physical sizes of 2.4 Mpc and 2.0 Mpc, respectively. Only the cores of these GRGs were clearly visible in previous high resolution VLA observations, since the diffuse emission of the lobes was resolved out. However, the excellent sensitivity and uv coverage of the new MeerKAT telescope allowed this diffuse emission to be detected. The GRGs occupy an unpopulated region of radio power – size parameter space. Based on a recent estimate of the GRG number density, the probability of finding two or more GRGs with such large sizes at z < 0.4 in a ∼1 deg2 field is only 2.7 × 10−6, assuming Poisson statistics. This supports the hypothesis that the prevalence of GRGs has been significantly underestimated in the past due to limited sensitivity to low surface brightness emission. The two GRGs presented here may be the first of a new population to be revealed through surveys like MIGHTEE which provide exquisite sensitivity to diffuse, extended emission
GMRT 610-MHz observations of the faint radio source population – and what these tell us about the higher radio-frequency sky
We present 610-MHz Giant Metrewave Radio Telescope observations of 0.84 deg of the AMI001 field (centred on 002310, +31°53′) with an rms noise of 18 μJy beam in the centre of the field. A total of 955 sources are detected, and 814 are included in the source count analysis. The source counts from these observations are consistent with previous work. We have used these data to study the spectral index distribution of a sample of sources selected at 15.7 GHz from the recent deep extension to the Tenth Cambridge (10C) survey. The median spectral index, α, (where S ∝ ν) between 0.08</mJy<0.2 is 0.32 ± 0.14, showing that star-forming galaxies, which have much steeper spectra, are not contributing significantly to this population. This is in contrast to several models, but in agreement with the results from the 10C ultradeep source counts; the high-frequency sky therefore continues to be dominated by radio galaxies down to S = 0.1 mJy.The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. IHW thanks the Science and Technologies Facilities Council for a studentship. IHW and MJJ acknowledge support from the Square Kilometre Array South Africa. IHW thanks the South African Astronomical Observatory, where some of this work was carried out
The faint source population at 15.7 GHz – III. A high-frequency study of HERGs and LERGs
A complete sample of 96 faint (S > 0.5 mJy) radio galaxies is selected from the Tenth Cambridge (10C) survey at 15.7 GHz. Optical spectra are used to classify 17 of the sources as high-excitation or low-excitation radio galaxies (HERGs and LERGs, respectively), for the remaining sources three other methods are used; these are optical compactness, X-ray observations and mid-infrared colour-colour diagrams. 32 sources are HERGs and 35 are LERGs while the remaining 29 sources could not be classified. We find that the 10C HERGs tend to have higher 15.7-GHz flux densities, flatter spectra, smaller linear sizes and be found at higher redshifts than the LERGs. This suggests that the 10C HERGs are more core dominated than the LERGs. Lower-frequency radio images, linear sizes and spectral indices are used to classify the sources according to their radio morphology; 18 are Fanaroffand Riley type I or II sources, a further 13 show some extended emission, and the remaining 65 sources are compact and are referred to as FR0 sources. The FR0 sources are sub-divided into compact, steep-spectrum sources (13 sources) or gigahertz-peaked spectrum sources (10 sources) with the remaining 42 in an unclassified class. FR0 sources are more dominant in the subset of sources with 15.7-GHz flux densities < 1 mJy, consistent with the previous result that the fainter 10C sources have flatter radio spectra. The properties of the 10C sources are compared to the higher-flux density Australia Telescope 20 GHz (AT20G) survey. The 10C sources are found at similar redshifts to the AT20G sources but have lower luminosities. The nature of the high-frequency selected objects changes as flux density decreases; at high flux densities the objects are primarily quasars, while at low flux densities radio galaxies dominate
The faint radio source population at 15.7 GHz – IV. The dominance of core emission in faint radio galaxies
We present 15-GHz Karl G. Jansky Very Large Array observations of a complete sample of radio galaxies selected at 15.7 GHz from the Tenth Cambridge (10C) survey. 67 out of the 95 sources (71 per cent) are unresolved in the new observations and lower frequency radio observations, placing an upper limit on their angular size of ∼2 arcsec. Thus, compact radio galaxies, or radio galaxies with very faint jets, are the dominant population in the 10C survey. This provides support for the suggestion in our previous work that low-luminosity (L<1025W~Hz−1) radio galaxies are core dominated, although higher resolution observations are required to confirm this directly. The 10C sample of compact, high-frequency selected radio galaxies is a mixture of high-excitation and low-excitation radio galaxies and displays a range of radio spectral shapes, demonstrating that they are a mixed population of objects
Exploring the faint source population at 15.7 GHz
We discuss our current understanding of the nature of the faint, high-frequency radio sky. The Tenth Cambridge (10C) survey at 15.7 GHz is the deepest high-frequency radio survey to date, covering 12 square degrees to a completeness limit of 0.5 mJy, making it the ideal starting point from which to study this population. In this work we have matched the 10C survey to several lower-frequency radio catalogues and a wide range of multi-wavelength data (near- and far-infrared, optical and X-ray). We find a significant increase in the proportion of flat-spectrum sources at flux densities below 1 mJy - the median radio spectral index between 15.7 GHz and 610 MHz changes from 0.75 for flux densities greater than 1.5 mJy to 0.08 for flux densities less than 0.8 mJy. The multi-wavelength analysis shows that the vast majority (> 94 percent) of the 10C sources are radio galaxies; it is therefore likely that these faint, flat spectrum sources are a result of the cores of radio galaxies becoming dominant at high frequencies. We have used new observations to extend this study to even fainter flux densities, calculating the 15.7-GHz radio source count down to 0.1 mJy, a factor of five deeper than previous studies. There is no evidence for a new population of sources, showing that the high-frequency sky continues to be dominated by radio galaxies down to at least 0.1 mJy