30 research outputs found

    How to measure working memory capacity in the change detection paradigm

    Get PDF
    Although the measurement of working memory capacity is crucial to understanding working memory and its interaction with other cognitive faculties, there are inconsistencies in the literature on how to measure capacity. We address the measurement in the change detection paradigm, popularized by Luck and Vogel (Nature, 390, 279–281, 1997). Two measures for this task—from Pashler (Perception & Psychophysics, 44, 369–378, 1988) and Cowan (The Behavioral and Brain Sciences, 24, 87–114, 2001), respectively—have been used interchangeably, even though they may yield qualitatively different conclusions. We show that the choice between these two measures is not arbitrary. Although they are motivated by the same underlying discrete-slots working memory model, each is applicable only to a specific task; the two are never interchangeable. In the course of deriving these measures, we discuss subtle but consequential flaws in the underlying discrete-slots model. These flaws motivate revision in the modal model and capacity measures

    Fleeting Perceptual Experience and the Possibility of Recalling Without Seeing

    Get PDF
    We explore an intensely debated problem in neuroscience, psychology and philosophy: the degree to which the “phenomenological consciousness” of the experience of a stimulus is separable from the “access consciousness” of its reportability. Specifically, it has been proposed that these two measures are dissociated from one another in one, or both directions. However, even if it was agreed that reportability and experience were doubly dissociated, the limits of dissociation logic mean we would not be able to conclusively separate the cognitive processes underlying the two. We take advantage of computational modelling and recent advances in state-trace analysis to assess this dissociation in an attentional/experiential blink paradigm. These advances in state-trace analysis make use of Bayesian statistics to quantify the evidence for and against a dissociation. Further evidence is obtained by linking our finding to a prominent model of the attentional blink – the Simultaneous Type/Serial Token model. Our results show evidence for a dissociation between experience and reportability, whereby participants appear able to encode stimuli into working memory with little, if any, conscious experience of them. This raises the possibility of a phenomenon that might be called sight-blind recall, which we discuss in the context of the current experience/reportability debate

    Bottlenecks of motion processing during a visual glance: the leaky flask model

    Get PDF
    YesWhere do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.Supported by R01 EY018165 and P30 EY007551 from the National Institutes of Health (NIH)

    Serial dependence is absent at the time of perception but increases in visual working memory

    No full text
    Abstract Recent experiments have shown that visual cognition blends current input with that from the recent past to guide ongoing decision making. This serial dependence appears to exploit the temporal autocorrelation normally present in visual scenes to promote perceptual stability. While this benefit has been assumed, evidence that serial dependence directly alters stimulus perception has been limited. In the present study, we parametrically vary the delay between stimulus and response in a spatial delayed response task to explore the trajectory of serial dependence from the moment of perception into post-perceptual visual working memory. We find that behavioral responses made immediately after viewing a stimulus show evidence of adaptation, but not attractive serial dependence. Only as the memory period lengthens is a blending of past and present information apparent in behavior, reaching its maximum with a delay of six seconds. These results dovetail with other recent findings to bolster the interpretation that serial dependence is a phenomenon of mnemonic rather than perceptual processes. However, even while this pattern of effects in group-averaged data has now been found consistently, we show that the relative strengths of adaptation and serial dependence vary widely across individuals. Finally, we demonstrate that when leading mathematical models of working memory are adjusted to account for these trial-history effects, their fit to behavioral data is substantially improved
    corecore