7 research outputs found
Observations of Ly Emitters at High Redshift
In this series of lectures, I review our observational understanding of
high- Ly emitters (LAEs) and relevant scientific topics. Since the
discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs
have been identified photometrically (spectroscopically) at to . These large samples of LAEs are useful to address two major astrophysical
issues, galaxy formation and cosmic reionization. Statistical studies have
revealed the general picture of LAEs' physical properties: young stellar
populations, remarkable luminosity function evolutions, compact morphologies,
highly ionized inter-stellar media (ISM) with low metal/dust contents, low
masses of dark-matter halos. Typical LAEs represent low-mass high- galaxies,
high- analogs of dwarf galaxies, some of which are thought to be candidates
of population III galaxies. These observational studies have also pinpointed
rare bright Ly sources extended over kpc, dubbed
Ly blobs, whose physical origins are under debate. LAEs are used as
probes of cosmic reionization history through the Ly damping wing
absorption given by the neutral hydrogen of the inter-galactic medium (IGM),
which complement the cosmic microwave background radiation and 21cm
observations. The low-mass and highly-ionized population of LAEs can be major
sources of cosmic reionization. The budget of ionizing photons for cosmic
reionization has been constrained, although there remain large observational
uncertainties in the parameters. Beyond galaxy formation and cosmic
reionization, several new usages of LAEs for science frontiers have been
suggested such as the distribution of {\sc Hi} gas in the circum-galactic
medium and filaments of large-scale structures. On-going programs and future
telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the
science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological
Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., &
Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the
lecture program including the video recording and ppt files :
https://obswww.unige.ch/Courses/saas-fee-2016/program.cg
Recommended from our members
THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY for ∼1500 H-SELECTED GALAXIES at 1.37≤ z≤ 3.8
In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R = 3000-3650) rest-frame optical spectra (∼3700-7000 ) for ∼1500 galaxies at in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals:, down to fixed (F160W) magnitudes of 24.0, 24.5, and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [O ii], Hβ, [O iii], H, [N ii], and [S ii]) and stellar continuum and absorption features (e.g., Balmer lines, Ca-ii H and K, Mgb, 4000 break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ∼80% of the targets we derive a robust redshift from either emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass () and star formation rate. The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active
A dominant population of optically invisible massive galaxies in the early Universe
International audienceOur current knowledge of cosmic star-formation history during the first two billion years (corresponding to redshift z > 3) is mainly based on galaxies identified in rest-frame ultraviolet light 1 . However, this population of galaxies is known to under-represent the most massive galaxies, which have rich dust content and/or old stellar populations. This raises the questions of the true abundance of massive galaxies and the star-formation-rate density in the early Universe. Although several massive galaxies that are invisible in the ultraviolet have recently been confirmed at early epochs 24 , most of them are extreme starburst galaxies with star-formation rates exceeding 1,000 solar masses per year, suggesting that they are unlikely to represent the bulk population of massive galaxies. Here we report submillimetre (wavelength 870 micrometres) detections of 39 massive star-forming galaxies at z > 3, which are unseen in the spectral region from the deepest ultraviolet to the near-infrared. With a space density of about 2 × 10 per cubic megaparsec (two orders of magnitude higher than extreme starbursts 5 ) and star-formation rates of 200 solar masses per year, these galaxies represent the bulk population of massive galaxies that has been missed from previous surveys. They contribute a total star-formation-rate density ten times larger than that of equivalently massive ultraviolet-bright galaxies at z > 3. Residing in the most massive dark matter haloes at their redshifts, they are probably the progenitors of the largest present-day galaxies in massive groups and clusters. Such a high abundance of massive and dusty galaxies in the early Universe challenges our understanding of massive-galaxy formation