22 research outputs found

    Current tidal power technologies and their suitability for applications in coastal and marine areas

    Get PDF
    A considerable body of research is currently being performed to quantify available tidal energy resources and to develop efficient devices with which to harness them. This work is naturally focussed on maximising power generation from the most promising sites, and a review of the literature suggests that the potential for smaller scale, local tidal power generation from shallow near-shore sites has not yet been investigated. If such generation is feasible, it could have the potential to provide sustainable electricity for nearby coastal homes and communities as part of a distributed generation strategy, and would benefit from easier installation and maintenance, lower cabling and infrastructure requirements and reduced capital costs when compared with larger scale projects. This article reviews tidal barrages and lagoons, tidal turbines, oscillating hydrofoils and tidal kites to assess their suitability for small-scale electricity generation in shallow waters. This is achieved by discussing the power density, scalability, durability, maintainability, economic potential and environmental impacts of each concept. The performance of each technology in each criterion is scored against axial-flow turbines, allowing for them to be ranked according to their overall suitability. The review suggests that tidal kites and range devices are not suitable for small-scale shallow water applications due to depth and size requirements respectively. Cross-flow turbines appear to be the most suitable technology, as they have high power densities and a maximum size that is not constrained by water depth

    Invasive characteristics of human prostatic epithelial cells: understanding the metastatic process

    Get PDF
    Prostate cancer has a predilection to metastasise to the bone marrow stroma (BMS) by an as yet uncharacterised mechanism. We have defined a series of coculture models of invasion, which simulate the blood/BMS boundary and allow the elucidation of the signalling and mechanics of trans-endothelial migration within the complex bone marrow environment. Confocal microscopy shows that prostate epithelial cells bind specifically to bone marrow endothelial-to-endothelial cell junctions and initiate endothelial cell retraction. Trans-endothelial migration proceeds via an epithelial cell pseudopodial process, with complete epithelial migration occurring after 232±43 min. Stromal-derived factor-1 (SDF-1)/CXCR4 signalling induced PC-3 to invade across a basement membrane although the level of invasion was 3.5-fold less than invasion towards BMS (P=0.0007) or bone marrow endothelial cells (P=0.004). Maximal SDF-1 signalling of invasion was completely inhibited by 10 μM of the SDF-1 inhibitor T140. However, 10 μM T140 only reduced invasion towards BMS and bone marrow endothelial cells by 59% (P=0.001) and 29% (P=0.011), respectively. This study highlights the need to examine the potential roles of signalling molecules and/or inhibitors, not just in single-cell models but in coculture models that mimic the complex environment of the bone marrow

    Role of proteolytic enzymes in human prostate bone metastasis formation: in vivo and in vitro studies

    Get PDF
    Prostate cancers ability to invade and grow in bone marrow stroma is thought to be due in part to degradative enzymes. The formation of prostate skeletal metastases have been reproduced in vitro by growing co-cultures of prostatic epithelial cells in bone marrow stroma. Expression of urokinase plasminogen activator, matrix metalloproteinase 1 and 7 by prostatic epithelial cells were identified using immunocytochemistry. Also, in vivo tissue sections from human prostatic bone marrow metastases were stained. To establish the role of these enzymes on colony formation, inhibitory antibodies directed against urokinase plasminogen activator, matrix metalloproteinase 1 and matrix metalloproteinase 7 were added into primary prostatic epithelial cells and bone marrow stroma co-cultures. All prostatic epithelial cell cultures stained positively for matrix metalloproteinase 1, matrix metalloproteinase 7 and urokinase plasminogen activator. Generally prostatic epithelial cells derived from malignant tissues showed increased staining in comparison to epithelia derived from non-malignant tissue. In agreement with in vitro co-cultures, the in vivo tissue sections of prostate bone marrow metastases showed positive staining for all three enzymes. Inhibition studies demonstrated that blocking matrix metalloproteinase 1, matrix metalloproteinase 7 and urokinase plasminogen activator function reduced the median epithelial colony area significantly in bone marrow stroma co-cultures in vitro. Using a human ex-vivo model we have shown that matrix metalloproteinase 1, matrix metalloproteinase 7 and urokinase plasminogen activator play an important role in the establishment of prostatic epithelial cells within bone marrow

    Microlensing Binary Composed of M Dwarfs Revealed from a Very Long Time-scale Event

    Get PDF
    © 2018. The American Astronomical Society. All rights reserved. We present the analysis of a binary microlensing event, KMT-2016-BLG-2052, for which the lensing-induced brightening of the source star lasted for two seasons. We determine the lens mass from the combined measurements of the microlens parallax, πE, and angular Einstein radius, θE. The measured mass indicates that the lens is a binary composed of M dwarfs with masses of M1∼ 0.34 Moand M2∼ 0.17 Mo. The measured relative lens-source proper motion of μ ∼ 3.9 mas yr-1is smaller than ∼5 mas yr-1of typical Galactic lensing events, while the estimated angular Einstein radius of θE∼ 1.2 mas is substantially greater than the typical value of ∼0.5 mas. Therefore, it turns out that the long timescale of the event is caused by the combination of the slow μ and large θErather than the heavy mass of the lens. From the simulation of Galactic lensing events with very long timescales (tE≳ 100 days), we find that the probabilities that long timescale events are produced by lenses with masses ≥1.0 Moand ≥3.0 Moare ∼19% and 2.6%, respectively, indicating that events produced by heavy lenses comprise a minor fraction of long timescale events. The results indicate that it is essential to determine lens masses by measuring both πEand θEin order to firmly identify heavy stellar remnants, such as neutron stars and black holes

    OGLE-2016-BLG-0168 Binary Microlensing Event: Prediction and Confirmation of the Microlens Parallax Effect from Space-based Observations

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved.. The microlens parallax is a crucial observable for conclusively identifying the nature of lens systems in microlensing events containing or composed of faint (even dark) astronomical objects such as planets, neutron stars, brown dwarfs, and black holes. With the commencement of a new era of microlensing in collaboration with space-based observations, the microlens parallax can be routinely measured. In addition, space-based observations can provide opportunities to verify the microlens parallax measured from ground-only observations and to find a unique solution to the lensing light-curve analysis. Furthermore, since most space-based observations cannot cover the full light curves of lensing events, it is also necessary to verify the reliability of the information extracted from fragmentary space-based light curves. We conduct a test based on the microlensing event OGLE-2016-BLG-0168, created by a binary lens system consisting of almost equal mass M-dwarf stars, to demonstrate that it is possible to verify the microlens parallax and to resolve degeneracies using the space-based light curve even though the observations are fragmentary. Since space-based observatories will frequently produce fragmentary light curves due to their short observing windows, the methodology of this test will be useful for next-generation microlensing experiments that combine space-based and ground-based collaboration
    corecore