59 research outputs found

    Cutting edge: Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells

    Get PDF
    Polarized Th1 and Th2 cells differentially express adhesion molecules and chemokine receptors, endowing these cells with distinct tissue homing capabilities. Here we report that, in contrast to other chemokine receptors, the expression of CCR4 and CCR8 on Th2 cells is transiently increased following TCR and CD28 engagement. IL-4 is not required for this activation-induced up-regulation of CCR4 and CCR8. In accordance with receptor expression, the response of Th2 cells to I-309 (CCR8 ligand) and thymus- and activation-regulated chemokine (CCR4 and CCR8 ligand) is enhanced upon activation. Moreover, activated Th1 cells up-regulate CCR4 expression and functional responsiveness to thymus- and activation-regulated chemokine. Analysis of polarized subsets of CD8+ T cells reveals a similar pattern of chemokine receptor expression and modulation of responsiveness. Taken together, these findings suggest that an up-regulation of CCR4 and CCR8 following Ag encounter may contribute to the proper positioning of activated T cells within sites of antigenic challenge and/or specialized areas of lymphoid tissues

    Periodic Accumulation of Regulatory T Cells in the Uterus: Preparation for the Implantation of a Semi-Allogeneic Fetus?

    Get PDF
    BACKGROUND: Naturally occurring Foxp3(+)regulatory T cells play an important role in the inhibition of an immunological attack of the fetus. As implantation of the fetus poses an immediate antigenic challenge, the immune system has to prepare itself for this event prior to implantation. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we show using quantitative RT-PCR and flow cytometry that regulatory T cells accumulate in the uterus not only during pregnancy, but also every time the female becomes fertile. Their periodic accumulation is accompanied by matching fluctuations in uterine expression of several chemokines, which have been shown to play a role in the recruitment and retention of regulatory T cells. CONCLUSIONS/SIGNIFICANCE: The data lead us to propose that every time a female approaches estrus, regulatory T cells start to accumulate in the uterus in preparation for a possible implantation event. Once pregnancy is established, those regulatory T cells that have seen alloantigen need to be retained at their site of action. Whilst several chemokines appear to be involved in the recruitment and/or retention of regulatory T cells during estrus, in pregnancy this role appears to be taken over by CCL4

    In Situ Prior Proliferation of CD4+ CCR6+ Regulatory T Cells Facilitated by TGF-Ξ² Secreting DCs Is Crucial for Their Enrichment and Suppression in Tumor Immunity

    Get PDF
    BACKGROUND: CD4(+)CD25(+) regulatory T cells (Tregs), a heterogeneous population, were enrichment in tumor mass and played an important role in modulating anti-tumor immunity. Recently, we reported a Treg subset, CCR6(+) Tregs but not CCR6(-)Tregs, were enriched in tumor mass and closely related to poor prognosis of breast cancer patients. However, the underlying mechanism remains elusive. Here, we carefully evaluate the enrichment of CCR6(+)Tregs in tumor mass during progression of breast cancer and explore its possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: The frequency of CCR6(+)Tregs in tumor infiltrating lymphocytes (TILs ) was analyzed at early stage and at late stage of tumor in a murine breast cancer model by FACS respectively. The expansion of CCR6(+)Tregs and their CCR6(-) counterpart in tumor mass were determined by BrdU incorporation assay. The effect and its possible mechanism of tumor-resident antigen presenting cells (APCs) on the proliferation of CCR6(+)Tregs also were evaluated. The role of local expansion of CCR6(+)Tregs in their enrichment and suppression in vivo also was evaluated in adoptive cell transfer assay. We found that the prior enrichment of CCR6(+)Tregs but not CCR6(-)Tregs in tumor mass during progression of murine breast cancer, which was dependent on the dominant proliferation of CCR6(+) Tregs in situ. Further study demonstrated that tumor-resident DCs triggered the proliferation of CCR6(+)Treg cells in TGF-Ξ² dependent manner. Adoptive transfer of CCR6(+)Tregs was found to potently inhibit the function of CD8(+)T cells in vivo, which was dependent on their proliferation and subsequently enrichment in tumor mass. CONCLUSIONS/SIGNIFICANCE: Our finding suggested that CCR6(+) Tregs, a distinct subset of Tregs, exert its predominant suppressive role in tumor immunity through prior in situ expansion, which might ultimately provide helpful thoughts for the designing of Treg-based immunotherapy for tumor in the future

    Accumulation of CCR4+ CTLA-4hi FOXP3+CD25hi Regulatory T Cells in Colon Adenocarcinomas Correlate to Reduced Activation of Conventional T Cells

    Get PDF
    BACKGROUND: Colorectal cancer usually gives rise to a specific anti-tumor immune response, but for unknown reasons the resulting immunity is not able to clear the tumor. Recruitment of activated effector lymphocytes to the tumor is important for efficient anti-tumor responses, while the presence of regulatory T cells (Treg) down-modulate tumor-specific immunity. We therefore aimed to determine homing mechanisms and activation stage of Treg and effector T cell infiltrating colon tumors compared to cells from the unaffected mucosa in patients suffering from colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: Lymphocytes were isolated from unaffected and tumor mucosa from patients with colon adenocarcinoma, and flow cytometry, immunohistochemistry, and quantitative PCR was used to investigate the homing mechanisms and activation stage of infiltrating Treg and conventional lymphocytes. We detected significantly higher frequencies of CD25(high)FOXP3⁺CD127(low) putative Treg in tumors than unaffected mucosa, which had a complete demethylation in the FOXP3 promotor. Tumor-associated Treg had a high expression of CTLA-4, and some appeared to be antigen experienced effector/memory cells based on their expression of αEβ7 (CD103). There were also significantly fewer activated T cells and more CTLA-4⁺ conventional T cells susceptible to immune regulation in the tumor-associated mucosa. In contrast, CD8⁺granzyme B⁺ putative cytotoxic cells were efficiently recruited to the tumors. The frequencies of cells expressing α4β7 and the Th1 associated chemokine receptor CXCR3 were significantly decreased among CD4⁺ T cells in the tumor, while frequencies of CD4⁺CCR4⁺ lymphocytes were significantly increased. CONCLUSIONS/SIGNIFICANCE: This study shows that CCR4⁺CTLA4(hi) Treg accumulate in colon tumors, while the frequencies of activated conventional Th1 type T cells are decreased. The altered lymphocyte composition in colon tumors will probably diminish the ability of the immune system to effectively attack tumor cells, and reducing the Treg activity is an important challenge for future immunotherapy protocols

    In Situ Patrolling of Regulatory T Cells Is Essential for Protecting Autoimmune Exocrinopathy

    Get PDF
    BACKGROUND: Migration of T cells, including regulatory T (Treg) cells, into the secondary lymph organs is critically controlled by chemokines and adhesion molecules. However, the mechanisms by which Treg cells regulate organ-specific autoimmunity via these molecules remain unclear. Although we previously reported autoimmune exocrinopathy resembling SjΓΆgren's syndrome (SS) in the lacrimal and salivary glands from C-C chemokine receptor 7 (CCR7)-deficient mice, it is still unclear whether CCR7 signaling might specifically affect the dynamics and functions of Treg cells in vivo. We therefore investigated the cellular mechanism for suppressive function of Treg cells via CCR7 in autoimmunity using mouse models and human samples. METHODS AND FINDINGS: Patrolling Treg cells were detected in the exocrine organs such as lacrimal and salivary glands from normal mice that tend to be targets for autoimmunity while the Treg cells were almost undetectable in the exocrine glands of CCR7(-/-) mice. In addition, we found the significantly increased retention of CD4(+)CD25(+)Foxp3(+) Treg cells in the lymph nodes of CCR7(-/-) mice with aging. Although Treg cell egress requires sphingosine 1-phosphate (S1P), chemotactic function to S1P of CCR7-/- Treg cells was impaired compared with that of WT Treg cells. Moreover, the in vivo suppression activity was remarkably diminished in CCR7(-/-) Treg cells in the model where Treg cells were co-transferred with CCR7(-/-) CD25(-)CD4(+) T cells into Rag2(-/-) mice. Finally, confocal analysis showed that CCR7(+)Treg cells were detectable in normal salivary glands while the number of CCR7(+)Treg cells was extremely decreased in the tissues from patients with SjΓΆgren's syndrome. CONCLUSIONS: These results indicate that CCR7 essentially governs the patrolling functions of Treg cells by controlling the traffic to the exocrine organs for protecting autoimmunity. Characterization of this cellular mechanism could have clinical implications by supporting development of new diagnosis or treatments for the organ-specific autoimmune diseases such as SjΓΆgren's syndrome and clarifying how the local immune system regulates autoimmunity

    Characterization of Protective Human CD4+CD25+ FOXP3+ Regulatory T Cells Generated with IL-2, TGF-Ξ² and Retinoic Acid

    Get PDF
    BACKGROUND: Protective CD4+CD25+ regulatory T cells bearing the Forkhead Foxp3 transcription factor can now be divided into three subsets: Endogenous thymus-derived cells, those induced in the periphery, and another subset induced ex-vivo with pharmacological amounts of IL-2 and TGF-Ξ². Unfortunately, endogenous CD4+CD25+ regulatory T cells are unstable and can be converted to effector cells by pro-inflammatory cytokines. Although protective Foxp3+CD4+CD25+ cells resistant to proinflammatory cytokines have been generated in mice, in humans this result has been elusive. Our objective, therefore, was to induce human naΓ―ve CD4+ cells to become stable, functional CD25+ Foxp3+ regulatory cells that were also resistant to the inhibitory effects of proinflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS: The addition of the vitamin A metabolite, all-trans retinoic acid (atRA) to human naΓ―ve CD4+ cells suboptimally activated with IL-2 and TGF-Ξ² enhanced and stabilized FOXP3 expression, and accelerated their maturation to protective regulatory T cells. AtRA, by itself, accelerated conversion of naΓ―ve to mature cells but did not induce FOXP3 or suppressive activity. The combination of atRA and TGF-Ξ² enabled CD4+CD45RA+ cells to express a phenotype and trafficking receptors similar to natural Tregs. AtRA/TGF-Ξ²-induced CD4+ regs were anergic and low producers of IL-2. They had potent in vitro suppressive activity and protected immunodeficient mice from a human-anti-mouse GVHD as well as expanded endogenous Tregs. However, treatment of endogenous Tregs with IL-1Ξ² and IL-6 decreased FOXP3 expression and diminished their protective effects in vivo while atRA-induced iTregs were resistant to these inhibitory effects. CONCLUSIONS/SIGNIFICANCE: We have developed a methodology that induces human CD4(+) cells to rapidly become stable, fully functional suppressor cells that are also resistant to proinflammatory cytokines. This methodology offers a practical novel strategy to treat human autoimmune diseases and prevent allograft rejection without the use of agents that kill cells or interfere with signaling pathways

    Phenotypic characterisation of regulatory T cells in dogs reveals signature transcripts conserved in humans and mice

    Get PDF
    Regulatory T cells (Tregs) are a double-edged regulator of the immune system. Aberrations of Tregs correlate with pathogenesis of inflammatory, autoimmune and neoplastic disorders. Phenotypically and functionally distinct subsets of Tregs have been identified in humans and mice on the basis of their extensive portfolios of monoclonal antibodies (mAb) against Treg surface antigens. As an important veterinary species, dogs are increasingly recognised as an excellent model for many human diseases. However, insightful study of canine Tregs has been restrained by the limited availability of mAb. We therefore set out to characterise CD4+CD25high T cells isolated ex vivo from healthy dogs and showed that they possess a regulatory phenotype, function, and transcriptomic signature that resembles those of human and murine Tregs. By launching a cross-species comparison, we unveiled a conserved transcriptomic signature of Tregs and identified that transcript hip1 may have implications in Treg function

    Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    Get PDF
    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite infections

    Why Functional Pre-Erythrocytic and Bloodstage Malaria Vaccines Fail: A Meta-Analysis of Fully Protective Immunizations and Novel Immunological Model

    Get PDF
    Background: Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. Methodology/Principal Findings: We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. Conclusions/Significance: We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications fo

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation
    • …
    corecore