19 research outputs found

    Measuring the propagation speed of gravitational waves with LISA

    Get PDF
    The propagation speed of gravitational waves, cT , has been tightly constrained by the binary neutron star merger GW170817 and its electromagnetic counterpart, under the assumption of a frequency-independent cT . Drawing upon arguments from Effective Field Theory and quantum gravity, we discuss the possibility that modifications of General Relativity allow for transient deviations of cT from the speed of light at frequencies well below the band of current ground-based detectors. We motivate two representative Ansätze for cT (f), and study their impact upon the gravitational waveforms of massive black hole binary mergers detectable by the LISA mission. We forecast the constraints on cT (f) obtainable from individual systems and a population of sources, from both inspiral and a full inspiral-merger-ringdown waveform. We show that LISA will enable us to place stringent independent bounds on departures from General Relativity in unexplored low-frequency regimes, even in the absence of an electromagnetic counterpart

    Gold and silver diffusion in germanium: a thermodynamic approach

    Get PDF
    Diffusion properties are technologically important in the understanding of semiconductors for the efficent formation of defined nanoelectronic devices. In the present study we employ experimental data to show that bulk materials properties (elastic and expansivity data) can be used to describe gold and silver diffusion in germanium for a wide temperature range (702–1177 K). Here we show that the so-called cBΩ model thermodynamic model, which assumes that the defect Gibbs energy is proportional to the isothermal bulk modulus and the mean volume per atom, adequately metallic diffusion in germanium

    Gauges and functional measures in quantum gravity I: Einstein theory

    Get PDF
    We perform a general computation of the off-shell one-loop divergences in Einstein gravity, in a two-parameter family of path integral measures, corresponding to different ways of parametrizing the graviton field, and a two-parameter family of gauges. Trying to reduce the gauge- and measure-dependence selects certain classes of measures and gauges respectively. There is a choice of two parameters (corresponding to the exponential parametrization and the partial gauge condition that the quantum field be traceless) that automatically eliminates the dependence on the remaining two parameters and on the cosmological constant. We observe that the divergences are invariant under a Z2 \u201cduality\u201d transformation that (in a particularly important special case) involves the replacement of the densitized metric by a densitized inverse metric as the fundamental quantum variable. This singles out a formulation of unimodular gravity as the unique \u201cself-dual\u201d theory in this class. \ua9 2016, The Author(s)

    Search of scaling solutions in scalar-tensor gravity

    Get PDF
    We write new functional renormalization group equations for a scalar nonminimally coupled to gravity. Thanks to the choice of the parametrization and of the gauge fixing they are simpler than older equations and avoid some of the difficulties that were previously present. In three dimensions these equations admit, at least for sufficiently small fields, a solution that may be interpreted as a gravitationally dressed Wilson-Fisher fixed point. We also find for any dimension d>2 two analytic scaling solutions which we study for d=3 and d=4. One of them corresponds to the fixed point of the Einstein-Hilbert truncation, the others involve a nonvanishing minimal coupling

    High angular resolution gravitational wave astronomy

    No full text
    Since the very beginning of astronomy the location of objects on the sky has been a fundamental observational quantity that has been taken for granted. While precise two dimensional positional information is easy to obtain for observations in the electromagnetic spectrum, the positional accuracy of current and near future gravitational wave detectors is limited to between tens and hundreds of square degrees, which makes it extremely challenging to identify the host galaxies of gravitational wave events or to confidently detect any electromagnetic counterparts. Gravitational wave observations provide information on source properties and distances that is complementary to the information in any associated electromagnetic emission and that is very hard to obtain in any other way. Observing systems with multiple messengers thus has scientific potential much greater than the sum of its parts. A gravitational wave detector with higher angular resolution would significantly increase the prospects for finding the hosts of gravitational wave sources and triggering a multi-messenger follow-up campaign. An observatory with arcminute precision or better could be realised within the Voyage 2050 programme by creating a large baseline interferometer array in space and would have transformative scientific potential. Precise positional information of standard sirens would enable precision measurements of cosmological parameters and offer new insights on structure formation; a high angular resolution gravitational wave observatory would allow the detection of a stochastic background and resolution of the anisotropies within it; it would also allow the study of accretion processes around black holes; and it would have tremendous potential for tests of modified gravity and the discovery of physics beyond the Standard Model
    corecore