19 research outputs found

    X-ray diffraction from bone employing annular and semi-annular beams

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.We acknowledge gratefully the funding provided by the UK Engineering and Physical Sciences Research Council (EPSRC) grant number EP/K020196/

    The role of computerized tomography in the evaluation of gastrointestinal bleeding following negative or failed endoscopy: A review of current status

    No full text
    Gastrointestinal bleeding remains an important cause for emergency hospital admission with a significant related morbidity and mortality. Bleeding may relate to the upper or lower gastrointestinal tracts and clinical history and examination may guide investigations to the more likely source of bleeding. The now widespread availability of endoscopic equipment has made a huge impact on the rapid identification of the bleeding source. However, there remains a large group of patients with negative or failed endoscopy, in whom additional techniques are required to identify the source of bleeding. In the past, catheter angiography and radionuclide red cell labeling techniques were the preferred â€Čnext stepâ€Č modalities used to aid in identifying a bleeding source within the gastrointestinal tract. However, these techniques are time-consuming and of limited sensitivity and specificity. In addition, catheter angiography is a relatively invasive procedure. In recent years, computerized tomography (CT) has undergone major technological advances in its speed, resolution, multiplanar techniques and angiographic abilities. It has allowed excellent visualization of the both the small and large bowel allowing precise anatomical visualization of many causes of gastrointestinal tract (GIT) bleeding. In addition, recent advances in multiphasic imaging now allow direct visualization of bleeding into the bowel. In many centers CT has therefore become the â€Čnext stepâ€Č technique in identifying a bleeding source within the GIT following negative or failed endoscopy in the acute setting. In this review article, we review the current literature and discuss the current status of CT as a modality in investigating the patient with GIT bleeding

    Multimodality imaging features of hereditary multiple exostoses

    Full text link
    Hereditary multiple exostoses (HME) or diaphyseal aclasis is an inherited disorder characterised by the formation of multiple osteochondromas, which are cartilage-capped osseous outgrowths, and the development of associated osseous deformities. Individuals with HME may be asymptomatic or develop clinical symptoms, which prompt imaging studies. Different modalities ranging from plain radiographs to cross-sectional and nuclear medicine imaging studies can be helpful in the diagnosis and detection of complications in HME, including chondrosarcomatous transformation. We review the role and imaging features of these different modalities in HME

    18F-Fluorodeoxyglucose PET/CT and dynamic contrast-enhanced MRI as imaging biomarkers in malignant pleural mesothelioma

    No full text
    Purpose The purpose of this study was to compare the use of fluorine-18-fluorodeoxyglucose (18F-FDG) PET with computed tomography (CT) and dynamic contrast-enhanced (DCE) MRI to predict prognosis and monitor treatment in malignant pleural mesothelioma. Patients and methods 18F-FDG PET/CT and DCE-MRI studies carried out as part of the South West Area Mesothelioma Pemetrexed trial were used. 18F-FDG PET/CT and DCE-MRI studies were carried out before treatment, and after two cycles of chemotherapy, on patients treated with pemetrexed and cisplatin. A total of 73 patients were recruited, of whom 65 had PET/CT and DCE-MRI scans. Baseline measurements from 18F-FDG PET/CT (maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis) and DCE-MRI (integrated area under the first 90s of the curve and washout slope) were compared with overall survival (OS) using Kaplan–Meier and Cox regression analyses, and changes in imaging measurements were compared with disease progression. Results PET/CT and DCE-MRI measurements were not correlated with each other. Maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis were significantly related to OS with Cox regression analysis and Kaplan–Meir analysis, and DCE-MRI washout curve shape was significantly related to OS. DCE-MRI curve shape can be combined with 18F-FDG PET/CT to give additional prognostic information. Changes in measurements were not related to progression-free survival. Conclusions 18F-FDG PET/CT and DCE-MRI give prognostic information in malignant pleural mesothelioma. Neither PET/CT nor DCE-MRI is useful for monitoring disease progression.</p

    The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Osteoporosis is clinically assessed from bone mineral density measurements using dual energy X-ray absorption (DXA). However, these measurements do not always provide an accurate fracture prediction, arguably because DXA does not grapple with 'bone quality', which is a combined result of microarchitecture, texture, bone tissue properties, past loading history, material chemistry and bone physiology in reaction to disease. Studies addressing bone quality are comparatively few if one considers the potential importance of this factor. They suffer due to low number of human osteoporotic specimens, use of animal proxies and/or the lack of differentiation between confounding parameters such as gender and state of diseased bone. The present study considers bone samples donated from patients (n. = 37) who suffered a femoral neck fracture and in this very well defined cohort we have produced in previous work fracture toughness measurements (FT) which quantify its ability to resist crack growth which reflects directly the structural integrity of the cancellous bone tissue. We investigated correlations between BV/TV and other microarchitectural parameters; we examined effects that may suggest differences in bone remodelling between males and females and compared the relationships with the FT properties. The data crucially has shown that TbTh, TbSp, SMI and TbN may provide a proxy or surrogate for BV/TV. Correlations between FT critical stress intensity values and microarchitecture parameters (BV/TV, BS/TV, TbN, BS/BV and SMI) for osteoporotic cancellous tissue were observed and are for the first time reported in this study. Overall, this study has not only highlighted that the fracture model based upon BMD could potentially be improved with inclusion of other microarchitecture parameters, but has also given us clear clues as to which of them are more influential in this role.This programme of work is funded by an EPSRC research grant (EP/ K020196: Point-of-Care High Accuracy Fracture Risk Prediction). PZ acknowledges the support provided by the UK Department of Transport under the BOSCOS (Bone Scanning for Occupant Safety) project for which the human material was obtained in the Gloucester and Cheltenham NHS Trust hospitals under ethical consent (BOSCOS — Mr. Curwen CI REC ref. 01/179G
    corecore