14 research outputs found

    Ultra-Rapid Categorization of Fourier-Spectrum Equalized Natural Images: Macaques and Humans Perform Similarly

    Get PDF
    BACKGROUND: Comparative studies of cognitive processes find similarities between humans and apes but also monkeys. Even high-level processes, like the ability to categorize classes of object from any natural scene under ultra-rapid time constraints, seem to be present in rhesus macaque monkeys (despite a smaller brain and the lack of language and a cultural background). An interesting and still open question concerns the degree to which the same images are treated with the same efficacy by humans and monkeys when a low level cue, the spatial frequency content, is controlled. METHODOLOGY/PRINCIPAL FINDINGS: We used a set of natural images equalized in Fourier spectrum and asked whether it is still possible to categorize them as containing an animal and at what speed. One rhesus macaque monkey performed a forced-choice saccadic task with a good accuracy (67.5% and 76% for new and familiar images respectively) although performance was lower than with non-equalized images. Importantly, the minimum reaction time was still very fast (100 ms). We compared the performances of human subjects with the same setup and the same set of (new) images. Overall mean performance of humans was also lower than with original images (64% correct) but the minimum reaction time was still short (140 ms). CONCLUSION: Performances on individual images (% correct but not reaction times) for both humans and the monkey were significantly correlated suggesting that both species use similar features to perform the task. A similar advantage for full-face images was seen for both species. The results also suggest that local low spatial frequency information could be important, a finding that fits the theory that fast categorization relies on a rapid feedforward magnocellular signal

    Digital chest radiography: an update on modern technology, dose containment and control of image quality

    Get PDF
    The introduction of digital radiography not only has revolutionized communication between radiologists and clinicians, but also has improved image quality and allowed for further reduction of patient exposure. However, digital radiography also poses risks, such as unnoticed increases in patient dose and suboptimum image processing that may lead to suppression of diagnostic information. Advanced processing techniques, such as temporal subtraction, dual-energy subtraction and computer-aided detection (CAD) will play an increasing role in the future and are all targeted to decrease the influence of distracting anatomic background structures and to ease the detection of focal and subtle lesions. This review summarizes the most recent technical developments with regard to new detector techniques, options for dose reduction and optimized image processing. It explains the meaning of the exposure indicator or the dose reference level as tools for the radiologist to control the dose. It also provides an overview over the multitude of studies conducted in recent years to evaluate the options of these new developments to realize the principle of ALARA. The focus of the review is hereby on adult applications, the relationship between dose and image quality and the differences between the various detector systems

    Come for the looks, stay for the personality? A mixed methods investigation of reacquisition and owner recommendation of Bulldogs, French Bulldogs and Pugs

    Get PDF
    Brachycephalic breeds are proliferating internationally, with dramatic rises in popularity juxtaposed with common and severe breed-related health problems. Physical appearance is as a dominant factor attracting owners to brachycephalic breeds; however, whether these owners will choose their current breed for future ownership and develop 'breed-loyalty' in the face of health problems is not yet known. The aims of this study were (1) to quantify levels of, and explore factors associated with, brachycephalic dog owners' intentions to: (i) reacquire and/or (ii) recommend their current breed to potential first-time dog owners, and (2) to use qualitative methods to explore why brachycephalic dog owners would or would not recommend their current breed. This large mixed methods study reports on 2168 owners of brachycephalic breeds (Pugs: n = 789; French Bulldog: n = 741; Bulldogs: n = 638). Owners were highly likely to want to own their breed again in the future (93.0%) and recommend their breed to other owners (65.5%). Statistical modelling identified that first-time ownership and increased strength of the dog-owner relationship increased the likelihood of reacquisi-tion and/or recommendation. In contrast, an increased number of health problems, positive perception of their dog's health compared with the rest of their breed, and dog behaviour being worse than expected decreased the likelihood of reacquisition and/or recommendation. Thematic analyses constructed three themes describing why owners recommend their breed: positive behavioural attributes for a companion dog, breed suited to a sedentary lifestyle with limited space, and suitability for households with children. Five themes described why owners recommended against their breed: high prevalence of health problems, expense of ownership, ethical and welfare issues associated with breeding brachycephalic dogs, negative effects upon owner lifestyle and negative behavioural attributes. Understanding how breed-loyalty develops, and whether it can be attenuated, will be key to controlling the current population boom in brachycephalic breeds in the long-term

    Mapping Connectivity Damage in the Case of Phineas Gage

    Get PDF
    White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a “tamping iron” was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25–36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized “average” brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient

    Quality control measurements for digital x-ray detectors

    No full text
    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and gave an in-depth assessment of performance for a range of digital x-ray detectors.status: publishe
    corecore