19 research outputs found

    Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat’s heart

    Get PDF
    Background Exposure to high altitude in hypobaric hypoxia (HH) is considered to be a physiological oxidative/nitrosative stress. Quercetin (Que) is an effective antioxidant and free radical scavenger against oxidative/nitrosative stress. Aims The aim of this study was to investigate the cardioprotective effects of Que in animals exposed to intermittent HH (IHH) and therefore exposed to oxidative/nitrosative stress. Materials and methods Wistar albino male rats were exposed to short-term (2 days) or long-term (4 weeks; 5 days/week) IHH in a hypobaric chamber (5,500 m, 8 h/day, 380 mmHg, 12% O2, and 88% N2). Half of the animals received natural antioxidant Que (body weight: 30 mg/kg) daily before each IHH exposure and the remaining rats received vehicle (carboxymethylcellulose solution). Control rats were kept under normobaric normoxia (Nx) and treated in a corresponding manner. One day after the last exposure to IHH, we measured the cardiac hypoxia-induced oxidative/nitrosative stress biomarkers: the malondialdehyde (MDA) level and protein carbonyl (PC) content, the activity of some antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)], the nitrite plus nitrate (NOx) production, and the inducible nitric oxide synthase (iNOS) protein expression. Results Heart tissue MDA and PC levels, NOx level, and iNOS expression of IHH-exposed rats had increased, and SOD and CAT activities had decreased compared with those of the Nx-exposed rats (control groups). MDA, CP, NOx, and iNOS levels had decreased in Que-treated IHH-exposed rats compared with IHH-exposed rats (control groups). However, Que administration increased SOD and CAT activities of the heart tissue in the IHH-exposed rats. Conclusion HH exposure increases oxidative/nitrosative stress in heart tissue and Que is an effective cardioprotective agent, which further supports the oxidative cardiac dysfunction induced by hypoxia

    Towards reconciling structure and function in the nuclear pore complex

    Get PDF
    The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC

    P53 and DCC polymorphisms and the risk for colorectal cancer in Romanian patients—A preliminary study

    No full text
    Abstract. Inactivation of tumor suppressor genes p53 and DCC has been frequently observed in colorectal cancer. The aim of this case-control study was to test possible association between polymorphisms g.32008376A>G (rs714) of DCC gene and g.7175464A>G (rs1625895) of p53 gene and colorectal cancer risk in Romanian patients. We investigate these two polymorphisms by PCR-RFLP in individuals with colorectal cancer (n=120, M:W=74:46) and healthy persons (n=60, M:W=32:28). We observed that GG genotype of both genes confer protection for CRC (ORDCC 0.34, 95%CI 0.18-0.66, ORp53 0.28, 95%CI 0.14-0.55). The presence of DCC AA (OR 2.97, 95%CI 0.97-9.08) and p53 GA (OR 3.86, 95%CI 1.89-7.87) genotypes are associated with an increased risk for CRC. The alleles A of both markers are associated with the risk for disease (OR 2.87, 95%CI 1.49-5.50, respectively 3.54, 95%CI 1.81-6.91). We also observed that coinheritance of DCC GG genotype and p53 GG (OR 0.36) or p53 GA (OR 0.23) confer protection for CRC. These apparent discordant results obtained for the p53 gene may be the result of interaction with other markers or a selection bias. Our findings indicate that the p53 and DCC polymorphisms are associated with a risk of CRC in Romanian patients

    Myocardial Gene Expression Profiling to Predict and Identify Cardiac Allograft Acute Cellular Rejection: The GET-Study

    No full text
    Serial invasive endomyocardial biopsies (EMB) remain the gold standard for acute cellular rejection (ACR) diagnosis. However histological grading has several limitations. We aimed to explore the value of myocardial Gene Expression Profiling (GEP) for diagnosing and identifying predictive biomarkers of ACR.A case-control study nested within a retrospective heart transplant patients cohort included 126 patients with median (IQR) age 50 (41-57) years and 111 (88%) males. Among 1157 EMB performed, 467 were eligible (i.e, corresponding to either ISHLT grade 0 or ≥3A), among which 36 were selected for GEP according to the grading: 0 (CISHLT, n = 13); rejection ≥3A (RISHLT, n = 13); 0 one month before ACR (BRISHLT, n = 10).We found 294 genes differentially expressed between CISHLT and RISHLT, mainly involved in immune activation, and inflammation. Hierarchical clustering showed a clear segregation of CISHLT and RISHLT groups and heterogeneity of GEP within RISHLT. All EMB presented immune activation, but some RISHLT EMB were strongly subject to inflammation, whereas others, closer to CISHLT, were characterized by structural modifications with lower inflammation level. We identified 15 probes significantly different between BRISHLT and CISHLT, including the gene of the muscular protein TTN. This result suggests that structural alterations precede inflammation in ACR. Linear Discriminant Analysis based on these 15 probes was able to identify the histological status of every 36 samples.Myocardial GEP is a helpful method to accurately diagnose ACR, and predicts rejection one month before its histological occurrence. These results should be considered in cardiac allograft recipients' care
    corecore