82 research outputs found

    Gene Discovery in the Threatened Elkhorn Coral: 454 Sequencing of the Acropora palmata Transcriptome

    Get PDF
    BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000). The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite considerable exposure to genotoxic stress over long life spans, and showed conservation of important physiological pathways between corals and bilaterians

    Gene Flow and Genetic Diversity of a Broadcast-Spawning Coral in Northern Peripheral Populations

    Get PDF
    Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadcast-spawning coral Acropora digitifera at 19 sites in seven regions along the 1,000 km long island chain of Nansei Islands, Japan. This area includes both subtropical and temperate habitats. Thus, the coral populations around the Nansei Islands in Japan are northern peripheral populations that would be subjected to environmental stresses different from those in tropical areas. The existence of high genetic connectivity across this large geographic area was suggested for all sites (FST≤0.033) although small but significant genetic differentiation was detected among populations in geographically close sites and regions. In addition, A. digitifera appears to be distributed throughout the Nansei Islands without losing genetic diversity. Therefore, A. digitifera populations in the Nansei Islands may be able to recover relatively rapidly even when high disturbances of coral communities occur locally if populations on other reefs are properly maintained

    Preserving and Using Germplasm and Dissociated Embryonic Cells for Conserving Caribbean and Pacific Coral

    Get PDF
    Coral reefs are experiencing unprecedented degradation due to human activities, and protecting specific reef habitats may not stop this decline, because the most serious threats are global (i.e., climate change), not local. However, ex situ preservation practices can provide safeguards for coral reef conservation. Specifically, modern advances in cryobiology and genome banking could secure existing species and genetic diversity until genotypes can be introduced into rehabilitated habitats. We assessed the feasibility of recovering viable sperm and embryonic cells post-thaw from two coral species, Acropora palmata and Fungia scutaria that have diffferent evolutionary histories, ecological niches and reproductive strategies. In vitro fertilization (IVF) of conspecific eggs using fresh (control) spermatozoa revealed high levels of fertilization (>90% in A. palmata; >84% in F. scutaria; P>0.05) that were unaffected by tested sperm concentrations. A solution of 10% dimethyl sulfoxide (DMSO) at cooling rates of 20 to 30°C/min most successfully cryopreserved both A. palmata and F. scutaria spermatozoa and allowed producing developing larvae in vitro. IVF success under these conditions was 65% in A. palmata and 53% in F. scutaria on particular nights; however, on subsequent nights, the same process resulted in little or no IVF success. Thus, the window for optimal freezing of high quality spermatozoa was short (∼5 h for one night each spawning cycle). Additionally, cryopreserved F. scutaria embryonic cells had∼50% post-thaw viability as measured by intact membranes. Thus, despite some differences between species, coral spermatozoa and embryonic cells are viable after low temperature (−196°C) storage, preservation and thawing. Based on these results, we have begun systematically banking coral spermatozoa and embryonic cells on a large-scale as a support approach for preserving existing bio- and genetic diversity found in reef systems

    Sexual Plasticity and Self-Fertilization in the Sea Anemone Aiptasia diaphana

    Get PDF
    Traits that influence reproductive success and contribute to reproductive isolation in animal and plant populations are a central focus of evolutionary biology. In the present study we used an experimental approach to demonstrate the occurrence of environmental effects on sexual and asexual reproduction, and provide evidence for sexual plasticity and inter-clonal fertilization in laboratory-cultured lines of the sea anemone Aiptasia diaphana. We showed that in A. diaphana, both asexual reproduction by pedal laceration, and sexual reproduction have seasonal components. The rate of pedal laceration was ten-fold higher under summer photoperiod and water temperature conditions than under winter conditions. The onset of gametogenesis coincided with the rising water temperatures occurring in spring, and spawning occurred under parameters that emulated summer photoperiod and temperature conditions. In addition, we showed that under laboratory conditions, asexually produced clones derived from a single founder individual exhibit sexual plasticity, resulting in the development of both male and female individuals. Moreover, a single female founder produced not only males and females but also hermaphrodite individuals. We further demonstrated that A. diaphana can fertilize within and between clone lines, producing swimming planula larvae. These diverse reproductive strategies may explain the species success as invader of artificial marine substrates. We suggest that these diverse reproductive strategies, together with their unique evolutionary position, make Aiptasia diaphana an excellent model for studying the evolution of sex

    Settling into an Increasingly Hostile World: The Rapidly Closing “Recruitment Window” for Corals

    Get PDF
    Free space is necessary for larval recruitment in all marine benthic communities. Settling corals, with limited energy to invest in competitive interactions, are particularly vulnerable during settlement into well-developed coral reef communities. This situation may be exacerbated for corals settling into coral-depauperate reefs where succession in nursery microhabitats moves rapidly toward heterotrophic organisms inhospitable to settling corals. To study effects of benthic organisms (at millimeter to centimeter scales) on newly settled corals and their survivorship we deployed terra-cotta coral settlement plates at 10 m depth on the Mesoamerican Barrier Reef in Belize and monitored them for 38 mo. During the second and third years, annual recruitment rates declined by over 50% from the previous year. Invertebrate crusts (primarily sponges) were absent at the start of the experiment but increased in abundance annually from 39, 60, to 73% of the plate undersides by year three. Subsequently, substrates hospitable to coral recruitment, including crustose coralline algae, biofilmed terra-cotta and polychaete tubes, declined. With succession, substrates upon which spat settled shifted toward organisms inimical to survivorship. Over 50% of spat mortality was due to overgrowth by sponges alone. This result suggests that when a disturbance creates primary substrate a “recruitment window” for settling corals exists from approximately 9 to 14 mo following the disturbance. During the window, early-succession, facilitating species are most abundant. The window closes as organisms hostile to coral settlement and survivorship overgrow nursery microhabitats

    Location-Specific Responses to Thermal Stress in Larvae of the Reef-Building Coral Montastraea faveolata

    Get PDF
    The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean) temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions

    Temperature Anomalies and Mortality Events in Marine Communities: Insights on Factors behind Differential Mortality Impacts in the NW Mediterranean

    Get PDF
    Two large-scale mass mortality events (MMEs) of unprecedented extent and severity affecting rocky benthic communities occurred during the summers of 1999 and 2003 along the coasts of the NW Mediterranean Sea. These mortality outbreaks were associated with positive thermal anomalies. In this study, we performed an analysis of inter-regional and inter-annual differences in temperature (T) conditions associated with MMEs of the red gorgonian Paramuricea clavata by analyzing high resolution T time series (hourly records for 3 to 8 years) from four regions of the NW Mediterranean with differing hydrological conditions and biological impacts. High resolution records allowed a detailed analysis using classical and new descriptors to characterize T anomalies. We were able to determine that the MMEs were triggered by two main types of positive thermal anomalies, with the first type being characterized by short periods (2 to 5 days) with high Mean T reaching more than 27°C in some regions and being associated with high intra-day and intra-period variability, while the second type of anomaly presented long duration (near one month) at warm T (24°C) with low intra-period variability. Inter-regional patterns arose; some regions displayed both types of anomalies, while others exhibited only one type. The results showed that T conditions should be considered as the main factor that explains the observed inter-regional and inter-annual differences in mortality impacts. In explaining these differences, the late timing of T anomalies, in addition to their magnitude was found to be determinant. Finally, by combining thermotolerance experimental data with the maximal T stress conditions observed in the four regions, we were able to determine the differential risk of mass mortality across regions. We conclude that expanding high resolution T series is important for the development of sound management and conservation plans to protect Mediterranean marine biodiversity in the face of climate change

    Six priorities to advance the science and practice of coral reef restoration worldwide

    Full text link
    Coral reef restoration is a rapidly growing movement galvanized by the accelerating degradation of the world's tropical coral reefs. The need for concerted and collaborative action focused on the recovery of coral reef ecosystems coalesced in the creation of the Coral Restoration Consortium (CRC) in 2017. In March 2020, the CRC leadership team met for a biennial review of international coral reef restoration efforts and a discussion of perceived knowledge and implementation bottlenecks that may impair scalability and efficacy. Herein we present six priorities wherein the CRC will foster scientific advancement and collaboration to: (1) increase restoration efficiency, focusing on scale and cost-effectiveness of deployment; (2) scale up larval-based coral restoration efforts, emphasizing recruit health, growth, and survival; (3) ensure restoration of threatened coral species proceeds within a population-genetics management context; (4) support a holistic approach to coral reef ecosystem restoration; (5) develop and promote the use of standardized terms and metrics for coral reef restoration; and (6) support coral reef restoration practitioners working in diverse geographic locations. These priorities are not exhaustive nor do we imply that accomplishing these tasks alone will be sufficient to restore coral reefs globally; rather these are topics where we feel the CRC community of practice can make timely and significant contributions to facilitate the growth of coral reef restoration as a practical conservation strategy. The goal for these collective actions is to provide tangible, local-scale advancements in reef condition that offset declines resulting from local and global stressors including climate change

    Phylogenetic and Morphologic Analyses of a Coastal Fish Reveals a Marine Biogeographic Break of Terrestrial Origin in the Southern Caribbean

    Get PDF
    Marine allopatric speciation involves interplay between intrinsic organismal properties and extrinsic factors. However, the relative contribution of each depends on the taxon under study and its geographic context. Utilizing sea catfishes in the Cathorops mapale species group, this study tests the hypothesis that both reproductive strategies conferring limited dispersal opportunities and an apparent geomorphologic barrier in the Southern Caribbean have promoted speciation in this group from a little studied area of the world.Mitochondrial gene sequences were obtained from representatives of the Cathorops mapale species group across its distributional range from Colombia to Venezuela. Morphometric and meristic analyses were also done to assess morphologic variation. Along a approximately 2000 km transect, two major lineages, Cathorops sp. and C. mapale, were identified by levels of genetic differentiation, phylogenetic reconstructions, and morphological analyses. The lineages are separated by approximately 150 km at the Santa Marta Massif (SMM) in Colombia. The northward displacement of the SMM into the Caribbean in the early Pleistocene altered the geomorphology of the continental margin, ultimately disrupting the natural habitat of C. mapale. The estimated approximately 0.86 my divergence of the lineages from a common ancestor coincides with the timing of the SMM displacement at approximately 0.78 my.Results presented here support the hypothesis that organismal properties as well as extrinsic factors lead to diversification of the Cathorops mapale group along the northern coast of South America. While a lack of pelagic larval stages and ecological specialization are forces impacting this process, the identification of the SMM as contributing to allopatric speciation in marine organisms adds to the list of recognized barriers in the Caribbean. Comparative examination of additional Southern Caribbean taxa, particularly those with varying life history traits and dispersal capabilities, will determine the extent by which the SMM has influenced marine phylogeography in the region

    Long Distance Dispersal and Connectivity in Amphi-Atlantic Corals at Regional and Basin Scales

    Get PDF
    Among Atlantic scleractinian corals, species diversity is highest in the Caribbean, but low diversity and high endemism are observed in various peripheral populations in central and eastern Atlantic islands and along the coasts of Brazil and West Africa. The degree of connectivity between these distantly separated populations is of interest because it provides insight into processes at both evolutionary and ecological time scales, such as speciation, recruitment dynamics and the persistence of coral populations. To assess connectivity in broadly distributed coral species of the Atlantic, DNA sequence data from two nuclear markers were obtained for six coral species spanning their distributional ranges. At basin-wide scales, significant differentiation was generally observed among populations in the Caribbean, Brazil and West Africa. Concordance of patterns in connectivity among co-distributed taxa indicates that extrinsic barriers, such as the Amazon freshwater plume or long stretches of open ocean, restrict dispersal of coral larvae from region to region. Within regions, dispersal ability appears to be influenced by aspects of reproduction and life history. Two broadcasting species, Siderastrea siderea and Montastraea cavernosa, were able to maintain gene flow among populations separated by as much as 1,200 km along the coast of Brazil. In contrast, brooding species, such as Favia gravida and Siderastrea radians, had more restricted gene flow along the Brazilian coast
    corecore